Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application
In this study, we present a multiobjective mixed-integer nonlinear programming (MINLP) model to design a closed-loop supply chain (CLSC) from production stage to distribution as well as recycling for reproduction. The given network includes production centers, potential points for establishing of di...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/9951220 |
id |
doaj-ef7e1fb9f996410784c572e0891535cc |
---|---|
record_format |
Article |
spelling |
doaj-ef7e1fb9f996410784c572e0891535cc2021-10-11T00:38:42ZengHindawi LimitedMathematical Problems in Engineering1563-51472021-01-01202110.1155/2021/9951220Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and ApplicationKomeyl Baghizadeh0Julia Pahl1Guiping Hu2Department of Industrial EngineeringSDU Engineering Operations ManagementIndustrial and Manufacturing Systems Engineering (IMSE)In this study, we present a multiobjective mixed-integer nonlinear programming (MINLP) model to design a closed-loop supply chain (CLSC) from production stage to distribution as well as recycling for reproduction. The given network includes production centers, potential points for establishing of distribution centers, retrieval centers, collecting and recycling centers, and the demand points. The presented model seeks to find optimal locations for distribution centers, second-hand product collection centers, and recycling centers under the uncertainty situation alongside the factory’s fixed points. The purpose of the presented model is to minimize overall network costs including processing, establishing, and transportation of products and return flows as well as environmental impacts while maximizing social scales and network flexibility according to the presence of uncertainty parameters in the problem. To solve the proposed model with fuzzy uncertainty, first, the improved epsilon (ε)-constraints approach is used to transform a multiobjective to a single-objective problem. Afterward, the Lagrangian relaxation approach is applied to effectively solve the problem. A real-world case study is used to evaluate the performance of the proposed model. Finally, sensitivity analysis is performed to study the effects of important parameters on the optimal solution.http://dx.doi.org/10.1155/2021/9951220 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Komeyl Baghizadeh Julia Pahl Guiping Hu |
spellingShingle |
Komeyl Baghizadeh Julia Pahl Guiping Hu Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application Mathematical Problems in Engineering |
author_facet |
Komeyl Baghizadeh Julia Pahl Guiping Hu |
author_sort |
Komeyl Baghizadeh |
title |
Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application |
title_short |
Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application |
title_full |
Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application |
title_fullStr |
Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application |
title_full_unstemmed |
Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application |
title_sort |
closed-loop supply chain design with sustainability aspects and network resilience under uncertainty: modelling and application |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1563-5147 |
publishDate |
2021-01-01 |
description |
In this study, we present a multiobjective mixed-integer nonlinear programming (MINLP) model to design a closed-loop supply chain (CLSC) from production stage to distribution as well as recycling for reproduction. The given network includes production centers, potential points for establishing of distribution centers, retrieval centers, collecting and recycling centers, and the demand points. The presented model seeks to find optimal locations for distribution centers, second-hand product collection centers, and recycling centers under the uncertainty situation alongside the factory’s fixed points. The purpose of the presented model is to minimize overall network costs including processing, establishing, and transportation of products and return flows as well as environmental impacts while maximizing social scales and network flexibility according to the presence of uncertainty parameters in the problem. To solve the proposed model with fuzzy uncertainty, first, the improved epsilon (ε)-constraints approach is used to transform a multiobjective to a single-objective problem. Afterward, the Lagrangian relaxation approach is applied to effectively solve the problem. A real-world case study is used to evaluate the performance of the proposed model. Finally, sensitivity analysis is performed to study the effects of important parameters on the optimal solution. |
url |
http://dx.doi.org/10.1155/2021/9951220 |
work_keys_str_mv |
AT komeylbaghizadeh closedloopsupplychaindesignwithsustainabilityaspectsandnetworkresilienceunderuncertaintymodellingandapplication AT juliapahl closedloopsupplychaindesignwithsustainabilityaspectsandnetworkresilienceunderuncertaintymodellingandapplication AT guipinghu closedloopsupplychaindesignwithsustainabilityaspectsandnetworkresilienceunderuncertaintymodellingandapplication |
_version_ |
1716829237071052800 |