Synthesis, Properties, and In Vitro Hydrolytic Degradation of Poly(d,l-lactide-co-glycolide-co-ε-caprolactone)

Random copolymers of poly(d,l-lactide-co-glycolide-co-ε-caprolactone) (PLGC) were synthesized by the ring-opening polymerization of d,l-lactide (DLLA), glycolide (GA), and ε-caprolactone (CL). The effects of CL on the copolymers were evaluated to prepare suitable copolymers with controlled propertie...

Full description

Bibliographic Details
Main Authors: Yixiu Liu, Xizhuang Bai, A. Liang
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2016/8082014
Description
Summary:Random copolymers of poly(d,l-lactide-co-glycolide-co-ε-caprolactone) (PLGC) were synthesized by the ring-opening polymerization of d,l-lactide (DLLA), glycolide (GA), and ε-caprolactone (CL). The effects of CL on the copolymers were evaluated to prepare suitable copolymers with controlled properties. Our results showed that the CL content significantly influenced the thermal and mechanical properties of the copolymers and that the CL content in compositions could be altered to control properties of random copolymers. The in vitro hydrolytic degradation of the resulting implants showed that the degradation rate of PLGC was lower than that of PLGA, which could markedly reduce acidic degradation products. Finally, we demonstrated that higher CL contents in compositions slowed degradation rates.
ISSN:1687-9422
1687-9430