Inertial Neural Networks with Unpredictable Oscillations

In this paper, inertial neural networks are under investigation, that is, the second order differential equations. The recently introduced new type of motions, unpredictable oscillations, are considered for the models. The motions continue a line of periodic and almost periodic oscillations. The res...

Full description

Bibliographic Details
Main Authors: Marat Akhmet, Madina Tleubergenova, Akylbek Zhamanshin
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/10/1797
id doaj-ef49f5875275458c99a90c891b185664
record_format Article
spelling doaj-ef49f5875275458c99a90c891b1856642020-11-25T03:53:54ZengMDPI AGMathematics2227-73902020-10-0181797179710.3390/math8101797Inertial Neural Networks with Unpredictable OscillationsMarat Akhmet0Madina Tleubergenova1Akylbek Zhamanshin2Department of Mathematics, Middle East Technical University, 06800 Ankara, TurkeyDepartment of Mathematics, Aktobe Regional State University, Aktobe 030000, KazakhstanDepartment of Mathematics, Aktobe Regional State University, Aktobe 030000, KazakhstanIn this paper, inertial neural networks are under investigation, that is, the second order differential equations. The recently introduced new type of motions, unpredictable oscillations, are considered for the models. The motions continue a line of periodic and almost periodic oscillations. The research is of very strong importance for neuroscience, since the existence of unpredictable solutions proves Poincaré chaos. Sufficient conditions have been determined for the existence, uniqueness, and exponential stability of unpredictable solutions. The results can significantly extend the role of oscillations for artificial neural networks exploitation, since they provide strong new theoretical and practical opportunities for implementation of methods of chaos extension, synchronization, stabilization, and control of periodic motions in various types of neural networks. Numerical simulations are presented to demonstrate the validity of the theoretical results.https://www.mdpi.com/2227-7390/8/10/1797inertial neural networksunpredictable oscillationsasymptotic stability
collection DOAJ
language English
format Article
sources DOAJ
author Marat Akhmet
Madina Tleubergenova
Akylbek Zhamanshin
spellingShingle Marat Akhmet
Madina Tleubergenova
Akylbek Zhamanshin
Inertial Neural Networks with Unpredictable Oscillations
Mathematics
inertial neural networks
unpredictable oscillations
asymptotic stability
author_facet Marat Akhmet
Madina Tleubergenova
Akylbek Zhamanshin
author_sort Marat Akhmet
title Inertial Neural Networks with Unpredictable Oscillations
title_short Inertial Neural Networks with Unpredictable Oscillations
title_full Inertial Neural Networks with Unpredictable Oscillations
title_fullStr Inertial Neural Networks with Unpredictable Oscillations
title_full_unstemmed Inertial Neural Networks with Unpredictable Oscillations
title_sort inertial neural networks with unpredictable oscillations
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-10-01
description In this paper, inertial neural networks are under investigation, that is, the second order differential equations. The recently introduced new type of motions, unpredictable oscillations, are considered for the models. The motions continue a line of periodic and almost periodic oscillations. The research is of very strong importance for neuroscience, since the existence of unpredictable solutions proves Poincaré chaos. Sufficient conditions have been determined for the existence, uniqueness, and exponential stability of unpredictable solutions. The results can significantly extend the role of oscillations for artificial neural networks exploitation, since they provide strong new theoretical and practical opportunities for implementation of methods of chaos extension, synchronization, stabilization, and control of periodic motions in various types of neural networks. Numerical simulations are presented to demonstrate the validity of the theoretical results.
topic inertial neural networks
unpredictable oscillations
asymptotic stability
url https://www.mdpi.com/2227-7390/8/10/1797
work_keys_str_mv AT maratakhmet inertialneuralnetworkswithunpredictableoscillations
AT madinatleubergenova inertialneuralnetworkswithunpredictableoscillations
AT akylbekzhamanshin inertialneuralnetworkswithunpredictableoscillations
_version_ 1724475938943533056