A Generalized Nonlinear Sum-Difference Inequality of Product Form

We establish a generalized nonlinear discrete inequality of product form, which includes both nonconstant terms outside the sums and composite functions of nonlinear function and unknown function without assumption of monotonicity. Upper bound estimations of unknown functions are given by technique...

Full description

Bibliographic Details
Main Authors: YongZhou Qin, Wu-Sheng Wang
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2013/247585
Description
Summary:We establish a generalized nonlinear discrete inequality of product form, which includes both nonconstant terms outside the sums and composite functions of nonlinear function and unknown function without assumption of monotonicity. Upper bound estimations of unknown functions are given by technique of change of variable, amplification method, difference and summation, inverse function, and the dialectical relationship between constants and variables. Using our result we can solve both the discrete inequality in Pachpatte (1995). Our result can be used as tools in the study of difference equations of product form.
ISSN:1110-757X
1687-0042