Shikonin protects against obesity through the modulation of adipogenesis, lipogenesis, and β-oxidation in vivo

Shikonin, a napthoquinone pigment in the L. erythrorhizon (Lithospermum erythrorhizon) plant, is used as a functional food to promote blood circulation and detoxification in Asia. We investigated the effect and molecular mechanisms of shikonin on high-fat diet-induced obesity in mice. C57BL/6J mice...

Full description

Bibliographic Details
Main Authors: So Young Gwon, Won Hee Choi, Da Hye Lee, Ji Yun Ahn, Chang Hwa Jung, BoKyung Moon, Tae Youl Ha
Format: Article
Language:English
Published: Elsevier 2015-06-01
Series:Journal of Functional Foods
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1756464615002133
Description
Summary:Shikonin, a napthoquinone pigment in the L. erythrorhizon (Lithospermum erythrorhizon) plant, is used as a functional food to promote blood circulation and detoxification in Asia. We investigated the effect and molecular mechanisms of shikonin on high-fat diet-induced obesity in mice. C57BL/6J mice were fed a normal diet, a high-fat diet, or a high-fat diet supplemented with shikonin for 8 weeks. We measured body weight change, adipose tissue weights, and biochemical markers. To elucidate the molecular mechanism of shikonin on diet-induced obesity, western blotting and quantitative real time PCR were performed. Shikonin reduced high-fat diet-induced increases in body weight, white adipose tissue mass, serum triglyceride, and total cholesterol levels. Blood insulin and leptin levels were significantly decreased by shikonin supplementation. Shikonin supplementation reduced protein content and mRNA expression of adipogenesis-related genes in white adipose tissue and lipogenesis-related genes in the liver, along with hepatic lipid content. Moreover, shikonin increased mRNA expression of the β-oxidation genes PPAR-α, PGC-1α, and ACOX1 in liver and skeletal muscle. Shikonin prevents high-fat diet-induced obesity in mice and may be a novel therapeutic approach for obesity prevention by modulating adipogenesis, lipogenesis, and fatty acid oxidation.
ISSN:1756-4646