Infinitely many sign-changing solutions for Kirchhoff-type equations with power nonlinearity

In this article we consider the Kirchhoff-type elliptic problem $$\displaylines{ -(a+b\int_{\Omega}|\nabla u|^2dx)\Delta u=|u|^{p-2}u, \quad\text{in } \Omega,\cr u=0, \quad \text{on } \partial\Omega, }$$ where $\Omega\subset\mathbb{R}^N$ and $p\in(2,2^*)$ with $2^*=\frac{2N}{N-2}$ if $N\geq 3$...

Full description

Bibliographic Details
Main Authors: Xianzhong Yao, Chunlai Mu
Format: Article
Language:English
Published: Texas State University 2016-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/59/abstr.html