Characterization of Multitermination CG Flashes Using a 3D Lightning Mapping System (FALMA)

We characterized 205 multiple-termination negative cloud-to-ground (CG) lightning flashes that were imaged by the Fast Antenna Lightning Mapping Array (FALMA) in Japan during the summer of 2017. The parameters we used included termination number, termination distance, fork height, return stroke (RS)...

Full description

Bibliographic Details
Main Authors: Panliang Gao, Daohong Wang, Dongdong Shi, Ting Wu, Nobuyuki Takagi
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/10/10/625
Description
Summary:We characterized 205 multiple-termination negative cloud-to-ground (CG) lightning flashes that were imaged by the Fast Antenna Lightning Mapping Array (FALMA) in Japan during the summer of 2017. The parameters we used included termination number, termination distance, fork height, return stroke (RS) number, the interval between the first RS of each termination, the shortest time difference between the strokes at different terminations, and the first RS intensities separated by termination occurrence orders. It was found that the multiple-termination flashes (MTFs) had a termination number ranging from 2 to 5, with the majority (148/205) at 2. The termination distance (with high probability) was between 2 and 4 km, with 10 out of 359 MTF termination distances being longer than 10 km. For most MTFs (146/205), their leader forks for different terminations occurred at a height between 4 and 6 km, indicating that the fork process mainly occurred inside the cloud. The RS number of the MTFs ranged from 2 to 18, with an arithmetic mean (AM) value of 5.8. The interval between the first RS of each termination in the MTFs ranged from 0.5 to 965.3 ms, with an AM value of 225.6 ms, while the shortest time difference between the strokes at different terminations had an AM value of 189.6 ms. The intensity of the first stroke in each termination tended to decrease with increasing termination occurrence orders.
ISSN:2073-4433