A review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves

We present an overview of averaging method for solving weakly nonlinear hyperbolic systems. An asymptotic solution is constructed, which is uniformly valid in the “large” domain of variables t + |x| ∼ O(ϵ –1). Using this method we obtain the averaged system, which disintegrates into independent equ...

Full description

Bibliographic Details
Main Authors: A. Krylovas, R. Čiegis
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2004-09-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9730
id doaj-ef202e7195c54bf6bca41422c3e0bcab
record_format Article
spelling doaj-ef202e7195c54bf6bca41422c3e0bcab2021-07-02T12:31:28ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102004-09-019310.3846/13926292.2004.9637254A review of numerical asymptotic averaging for weakly nonlinear hyperbolic wavesA. Krylovas0R. Čiegis1Vilnius Gediminas Technical University , Sauletekio al. 11, Vilnius, LT‐10223, LithuaniaVilnius Gediminas Technical University , Sauletekio al. 11, Vilnius, LT‐10223, Lithuania We present an overview of averaging method for solving weakly nonlinear hyperbolic systems. An asymptotic solution is constructed, which is uniformly valid in the “large” domain of variables t + |x| ∼ O(ϵ –1). Using this method we obtain the averaged system, which disintegrates into independent equations for the nonresonant systems. A scheme for theoretical justification of such algorithms is given and examples are presented. The averaged systems with periodic solutions are investigated for the following problems of mathematical physics: shallow water waves, gas dynamics and elastic waves. In the resonant case the averaged systems must be solved numerically. They are approximated by the finite difference schemes and the results of numerical experiments are presented. Silpnai netiesinių hiperbolinių sistemų skaitinio asimptotinio vidurkinimo apžvalga Santrauka Darbe nagrinėjamas silpnai netiesinių hiperbolinių sistemų ilgųjų bangų asimptotinis sprendinys. Siūlomas jo konstravimo metodas, pagrįstas vidurkinimu bei dviejų mastelių principu. Užrašytos skirtuminės schemos suvidurkintų lygčių sistemoms spręsti. Ištirti trys periodinių asimptotinių sprendinių pavyzdžiai: sekliųjų vandenų modelis, dujų dinamikos lygtys bei tampriųjų bangų sąveika. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9730small parameter methodperturbationshyperbolic systemsaveragingresonancefinite difference schemes
collection DOAJ
language English
format Article
sources DOAJ
author A. Krylovas
R. Čiegis
spellingShingle A. Krylovas
R. Čiegis
A review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves
Mathematical Modelling and Analysis
small parameter method
perturbations
hyperbolic systems
averaging
resonance
finite difference schemes
author_facet A. Krylovas
R. Čiegis
author_sort A. Krylovas
title A review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves
title_short A review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves
title_full A review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves
title_fullStr A review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves
title_full_unstemmed A review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves
title_sort review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2004-09-01
description We present an overview of averaging method for solving weakly nonlinear hyperbolic systems. An asymptotic solution is constructed, which is uniformly valid in the “large” domain of variables t + |x| ∼ O(ϵ –1). Using this method we obtain the averaged system, which disintegrates into independent equations for the nonresonant systems. A scheme for theoretical justification of such algorithms is given and examples are presented. The averaged systems with periodic solutions are investigated for the following problems of mathematical physics: shallow water waves, gas dynamics and elastic waves. In the resonant case the averaged systems must be solved numerically. They are approximated by the finite difference schemes and the results of numerical experiments are presented. Silpnai netiesinių hiperbolinių sistemų skaitinio asimptotinio vidurkinimo apžvalga Santrauka Darbe nagrinėjamas silpnai netiesinių hiperbolinių sistemų ilgųjų bangų asimptotinis sprendinys. Siūlomas jo konstravimo metodas, pagrįstas vidurkinimu bei dviejų mastelių principu. Užrašytos skirtuminės schemos suvidurkintų lygčių sistemoms spręsti. Ištirti trys periodinių asimptotinių sprendinių pavyzdžiai: sekliųjų vandenų modelis, dujų dinamikos lygtys bei tampriųjų bangų sąveika. First Published Online: 14 Oct 2010
topic small parameter method
perturbations
hyperbolic systems
averaging
resonance
finite difference schemes
url https://journals.vgtu.lt/index.php/MMA/article/view/9730
work_keys_str_mv AT akrylovas areviewofnumericalasymptoticaveragingforweaklynonlinearhyperbolicwaves
AT rciegis areviewofnumericalasymptoticaveragingforweaklynonlinearhyperbolicwaves
AT akrylovas reviewofnumericalasymptoticaveragingforweaklynonlinearhyperbolicwaves
AT rciegis reviewofnumericalasymptoticaveragingforweaklynonlinearhyperbolicwaves
_version_ 1721330097075519488