BTZ one-loop determinants via the Selberg zeta function for general spin

Abstract We relate the heat kernel and quasinormal mode methods of computing the 1-loop partition function of arbitrary spin fields on a rotating (Euclidean) BTZ background using the Selberg zeta function associated with ℍ3/ℤ, extending ( arXiv:1811.08433 ) [1]. Previously, Perry and Williams [2] sh...

Full description

Bibliographic Details
Main Authors: Cynthia Keeler, Victoria L. Martin, Andrew Svesko
Format: Article
Language:English
Published: SpringerOpen 2020-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2020)138
id doaj-ef02ec11495744d082758de0f9d4fd79
record_format Article
spelling doaj-ef02ec11495744d082758de0f9d4fd792020-11-25T03:05:58ZengSpringerOpenJournal of High Energy Physics1029-84792020-10-0120201011610.1007/JHEP10(2020)138BTZ one-loop determinants via the Selberg zeta function for general spinCynthia Keeler0Victoria L. Martin1Andrew Svesko2Department of Physics, Arizona State UniversityDepartment of Physics, Arizona State UniversityDepartment of Physics, Arizona State UniversityAbstract We relate the heat kernel and quasinormal mode methods of computing the 1-loop partition function of arbitrary spin fields on a rotating (Euclidean) BTZ background using the Selberg zeta function associated with ℍ3/ℤ, extending ( arXiv:1811.08433 ) [1]. Previously, Perry and Williams [2] showed for a scalar field that the zeros of the Selberg zeta function coincide with the poles of the associated scattering operator upon a relabeling of integers. We extend the integer relabeling to the case of general spin, and discuss its relationship to the removal of non-square-integrable Euclidean zero modes.http://link.springer.com/article/10.1007/JHEP10(2020)138Black HolesHigher Spin Gravity
collection DOAJ
language English
format Article
sources DOAJ
author Cynthia Keeler
Victoria L. Martin
Andrew Svesko
spellingShingle Cynthia Keeler
Victoria L. Martin
Andrew Svesko
BTZ one-loop determinants via the Selberg zeta function for general spin
Journal of High Energy Physics
Black Holes
Higher Spin Gravity
author_facet Cynthia Keeler
Victoria L. Martin
Andrew Svesko
author_sort Cynthia Keeler
title BTZ one-loop determinants via the Selberg zeta function for general spin
title_short BTZ one-loop determinants via the Selberg zeta function for general spin
title_full BTZ one-loop determinants via the Selberg zeta function for general spin
title_fullStr BTZ one-loop determinants via the Selberg zeta function for general spin
title_full_unstemmed BTZ one-loop determinants via the Selberg zeta function for general spin
title_sort btz one-loop determinants via the selberg zeta function for general spin
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2020-10-01
description Abstract We relate the heat kernel and quasinormal mode methods of computing the 1-loop partition function of arbitrary spin fields on a rotating (Euclidean) BTZ background using the Selberg zeta function associated with ℍ3/ℤ, extending ( arXiv:1811.08433 ) [1]. Previously, Perry and Williams [2] showed for a scalar field that the zeros of the Selberg zeta function coincide with the poles of the associated scattering operator upon a relabeling of integers. We extend the integer relabeling to the case of general spin, and discuss its relationship to the removal of non-square-integrable Euclidean zero modes.
topic Black Holes
Higher Spin Gravity
url http://link.springer.com/article/10.1007/JHEP10(2020)138
work_keys_str_mv AT cynthiakeeler btzoneloopdeterminantsviatheselbergzetafunctionforgeneralspin
AT victorialmartin btzoneloopdeterminantsviatheselbergzetafunctionforgeneralspin
AT andrewsvesko btzoneloopdeterminantsviatheselbergzetafunctionforgeneralspin
_version_ 1724676121996296192