BTZ one-loop determinants via the Selberg zeta function for general spin
Abstract We relate the heat kernel and quasinormal mode methods of computing the 1-loop partition function of arbitrary spin fields on a rotating (Euclidean) BTZ background using the Selberg zeta function associated with ℍ3/ℤ, extending ( arXiv:1811.08433 ) [1]. Previously, Perry and Williams [2] sh...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP10(2020)138 |
id |
doaj-ef02ec11495744d082758de0f9d4fd79 |
---|---|
record_format |
Article |
spelling |
doaj-ef02ec11495744d082758de0f9d4fd792020-11-25T03:05:58ZengSpringerOpenJournal of High Energy Physics1029-84792020-10-0120201011610.1007/JHEP10(2020)138BTZ one-loop determinants via the Selberg zeta function for general spinCynthia Keeler0Victoria L. Martin1Andrew Svesko2Department of Physics, Arizona State UniversityDepartment of Physics, Arizona State UniversityDepartment of Physics, Arizona State UniversityAbstract We relate the heat kernel and quasinormal mode methods of computing the 1-loop partition function of arbitrary spin fields on a rotating (Euclidean) BTZ background using the Selberg zeta function associated with ℍ3/ℤ, extending ( arXiv:1811.08433 ) [1]. Previously, Perry and Williams [2] showed for a scalar field that the zeros of the Selberg zeta function coincide with the poles of the associated scattering operator upon a relabeling of integers. We extend the integer relabeling to the case of general spin, and discuss its relationship to the removal of non-square-integrable Euclidean zero modes.http://link.springer.com/article/10.1007/JHEP10(2020)138Black HolesHigher Spin Gravity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Cynthia Keeler Victoria L. Martin Andrew Svesko |
spellingShingle |
Cynthia Keeler Victoria L. Martin Andrew Svesko BTZ one-loop determinants via the Selberg zeta function for general spin Journal of High Energy Physics Black Holes Higher Spin Gravity |
author_facet |
Cynthia Keeler Victoria L. Martin Andrew Svesko |
author_sort |
Cynthia Keeler |
title |
BTZ one-loop determinants via the Selberg zeta function for general spin |
title_short |
BTZ one-loop determinants via the Selberg zeta function for general spin |
title_full |
BTZ one-loop determinants via the Selberg zeta function for general spin |
title_fullStr |
BTZ one-loop determinants via the Selberg zeta function for general spin |
title_full_unstemmed |
BTZ one-loop determinants via the Selberg zeta function for general spin |
title_sort |
btz one-loop determinants via the selberg zeta function for general spin |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2020-10-01 |
description |
Abstract We relate the heat kernel and quasinormal mode methods of computing the 1-loop partition function of arbitrary spin fields on a rotating (Euclidean) BTZ background using the Selberg zeta function associated with ℍ3/ℤ, extending ( arXiv:1811.08433 ) [1]. Previously, Perry and Williams [2] showed for a scalar field that the zeros of the Selberg zeta function coincide with the poles of the associated scattering operator upon a relabeling of integers. We extend the integer relabeling to the case of general spin, and discuss its relationship to the removal of non-square-integrable Euclidean zero modes. |
topic |
Black Holes Higher Spin Gravity |
url |
http://link.springer.com/article/10.1007/JHEP10(2020)138 |
work_keys_str_mv |
AT cynthiakeeler btzoneloopdeterminantsviatheselbergzetafunctionforgeneralspin AT victorialmartin btzoneloopdeterminantsviatheselbergzetafunctionforgeneralspin AT andrewsvesko btzoneloopdeterminantsviatheselbergzetafunctionforgeneralspin |
_version_ |
1724676121996296192 |