Oxygen Reduction Reaction Electrocatalysis in Alkaline Electrolyte on Glassy-Carbon-Supported Nanostructured Pr6O11 Thin-Films

In this work, hierarchical nanostructured Pr6O11 thin-films of brain-like morphology were successfully prepared by electrostatic spray deposition (ESD) on glassy-carbon substrates. These surfaces were used as working electrodes in the rotating disk electrode (RDE) setup and characterized in alkaline...

Full description

Bibliographic Details
Main Authors: Rakesh K. Sharma, Verónica Müller, Marian Chatenet, Elisabeth Djurado
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Catalysts
Subjects:
Online Access:http://www.mdpi.com/2073-4344/8/10/461
Description
Summary:In this work, hierarchical nanostructured Pr6O11 thin-films of brain-like morphology were successfully prepared by electrostatic spray deposition (ESD) on glassy-carbon substrates. These surfaces were used as working electrodes in the rotating disk electrode (RDE) setup and characterized in alkaline electrolyte (0.1 M NaOH at 25 ± 2 °C) for the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR) for their potential application in alkaline electrolyzers or in alkaline fuel cells. The electrochemical performances of these electrodes were investigated as a function of their crystallized state (amorphous versus crystalline). Although none of the materials display spectacular HER and OER activity, the results show interesting performances of the crystallized sample towards the ORR with regards to this class of non-Pt group metal (non-PGM) electrocatalysts, the activity being, however, still far from a benchmark Pt/C electrocatalyst.
ISSN:2073-4344