Carbon Deposition Behavior of Ni Catalyst Prepared by Combustion Method in Slurry Methanation Reaction

Ni/Al<sub>2</sub>O<sub>3</sub> catalyst prepared by combustion method was applied in a slurry methanation reaction to study the catalytic performance, especially the regeneration performance. The catalyst properties were characterized by (X-Ray diffraction) XRD, Inductively c...

Full description

Bibliographic Details
Main Authors: Keming Ji, Fanhui Meng, Jiayao Xun, Ping Liu, Kan Zhang, Zhong Li, Junhua Gao
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/9/7/570
Description
Summary:Ni/Al<sub>2</sub>O<sub>3</sub> catalyst prepared by combustion method was applied in a slurry methanation reaction to study the catalytic performance, especially the regeneration performance. The catalyst properties were characterized by (X-Ray diffraction) XRD, Inductively coupled plasma atomic emission spectrometer (ICP-AES), Nitrogen adsorption-desorption, Transmission electron microscopy (TEM), Thermogravimetric analysis (TG/DTG), Temperature programmed oxidation (TPO), and H<sub>2</sub> chemisorption before and after reaction. The results show that the catalyst deactivation was mainly due to carbon deposition, which exhibited amorphous carbon films and formed by the disproportionation of CO. The carbon deposition was formed on the catalyst surface and existed as carbon films during the reaction, then it gradually separated from the catalyst surface, generated an overlapping multi-layer three-dimensional carbon structure, which covered the active site and blocked the pores. As a result, the metal surface area of catalyst decreases, as well as the activity. The carbon deposition could be removed by oxidative calcination without destroying the catalyst structure, the active sites could be re-exposed and the catalyst activity could be recovered.
ISSN:2073-4344