A Constrained Algorithm Based NMFα for Image Representation
Nonnegative matrix factorization (NMF) is a useful tool in learning a basic representation of image data. However, its performance and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained matrix decomposition algorithm for imag...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2014/179129 |
Summary: | Nonnegative matrix factorization (NMF) is a useful tool in learning a basic representation of image data. However, its performance and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained matrix decomposition algorithm for image representation which contains parameters associated with the characteristics of image data sets. Particularly, we impose label information as additional hard constraints to the α-divergence-NMF unsupervised learning algorithm. The resulted algorithm is derived by using Karush-Kuhn-Tucker (KKT) conditions as well as the projected gradient and its monotonic local convergence is proved by using auxiliary functions. In addition, we provide a method to select the parameters to our semisupervised matrix decomposition algorithm in the experiment. Compared with the state-of-the-art approaches, our method with the parameters has the best classification accuracy on three image data sets. |
---|---|
ISSN: | 1026-0226 1607-887X |