SMI of Bcl-2 TW-37 is active across a spectrum of B-cell tumors irrespective of their proliferative and differentiation status

<p>Abstract</p> <p>The Bcl-2 family of proteins is critical to the life and death of malignant B-lymphocytes. Interfering with their activity using small-molecule inhibitors (SMI) is being explored as a new therapeutic strategy for treating B-cell tumors. We evaluated the efficacy...

Full description

Bibliographic Details
Main Authors: Aboukameel Amro, Chen Ben, Azmi Asfar, Goustin Anton, Sun Yuan, Al-Katib Ayad M, Mohammad Ramzi M
Format: Article
Language:English
Published: BMC 2009-02-01
Series:Journal of Hematology & Oncology
Online Access:http://www.jhoonline.org/content/2/1/8
Description
Summary:<p>Abstract</p> <p>The Bcl-2 family of proteins is critical to the life and death of malignant B-lymphocytes. Interfering with their activity using small-molecule inhibitors (SMI) is being explored as a new therapeutic strategy for treating B-cell tumors. We evaluated the efficacy of TW-37, a non-peptidic SMI of Bcl-2 against a range spectrum of human B-cell lines, fresh patient samples and animal xenograft models. Multiple cytochemical and molecular approaches such as acridine orange/ethidium bromide assay for apoptosis, co-immunoprecipitation of complexes and western blot analysis, caspase luminescent activity assay and apoptotic DNA fragmentation assay were used to demonstrate the effect of TW-37 on different B-cell lines, patient derived samples, as well as in animal xenograft models. Nanomolar concentrations of TW-37 were able to induce apoptosis in both fresh samples and established cell lines with IC<sub>50 </sub>in most cases of 165–320 nM. Apoptosis was independent of proliferative status or pathological classification of B-cell tumor. TW-37 was able to block Bim-Bcl-X<sub>L </sub>and Bim-Mcl-1 heterodimerization and induced apoptosis via activation of caspases -9, -3, PARP and DNA fragmentation. TW-37 administered to tumor-bearing SCID mice led to significant tumor growth inhibition (T/C), tumor growth delay (T-C) and Log<sub>10</sub>kill, when used at its maximum tolerated dose (40 mg/kg × 3 days) via tail vein. TW-37 failed to induce changes in the Bcl-2 proteins levels suggesting that assessment of baseline Bcl-2 family proteins can be used to predict response to the drug. These findings indicate activity of TW-37 across the spectrum of human B-cell tumors and support the concept of targeting the Bcl-2 system as a therapeutic strategy regardless of the stage of B-cell differentiation.</p>
ISSN:1756-8722