Hydrothermal Aging Properties of Three Typical Bamboo Engineering Composites

The objective of this study was to investigate the hygroscopic characteristics of three typical bamboo engineering composites (Bamboo scrimber (BS), bamboo bundle/wood laminated veneer lumber (BLVL), and bamboo laminated timber (BLT)) as well as predict their performance changes and service life in...

Full description

Bibliographic Details
Main Authors: Haiying Zhou, Ge Wang, Linbi Chen, Zhiming Yu, Lee M. Smith, Fuming Chen
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/12/9/1450
Description
Summary:The objective of this study was to investigate the hygroscopic characteristics of three typical bamboo engineering composites (Bamboo scrimber (BS), bamboo bundle/wood laminated veneer lumber (BLVL), and bamboo laminated timber (BLT)) as well as predict their performance changes and service life in hot humid environments. The composites were subjected to three treatment conditions (23 &#176;C, 63 &#176;C, and 100 &#176;C) for this experiment. The hygroscopic thickness swelling model and Fick&#8217;s second law were used to quantify the characterization and prediction of the water absorption, thickness swelling rate, and water absorption rate of BS, BLVL, and BLT. The results indicated that the order of the hygroscopic thickness swelling coefficient <i>K<sub>SR</sub></i> and the diffusion coefficient D was BLT &gt; BLVL &gt; BS (at 23 &#176;C and 63 &#176;C). The optimal dimensional stability was displayed by BS, followed by BLVL and BLT. In addition to the hygroscopic properties, elastic modulus degradation was investigated. It was observed that the elastic modulus (MOR) degradation had a linear relationship with the aging temperature. After 152 h of the hydrothermal aging test (63 &#176;C), the MOE of BS, BLVL, and BLT degraded by 44.33%, 53.89%, and 25.83%, respectively.
ISSN:1996-1944