Application of Optimal Control to Influenza Pneumonia Coinfection with Antiviral Resistance
Influenza and pneumonia independently lead to high morbidity and mortality annually among the human population globally; however, a glaring fact is that influenza pneumonia coinfection is more vicious and it is a threat to public health. Emergence of antiviral resistance is a major impediment in the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Computational and Mathematical Methods in Medicine |
Online Access: | http://dx.doi.org/10.1155/2020/5984095 |
Summary: | Influenza and pneumonia independently lead to high morbidity and mortality annually among the human population globally; however, a glaring fact is that influenza pneumonia coinfection is more vicious and it is a threat to public health. Emergence of antiviral resistance is a major impediment in the control of the coinfection. In this paper, a deterministic mathematical model illustrating the transmission dynamics of influenza pneumonia coinfection is formulated having incorporated antiviral resistance. Optimal control theory is then applied to investigate optimal strategies for controlling the coinfection using prevalence reduction and treatment as the system control variables. Pontryagin’s maximum principle is used to characterize the optimal control. The derived optimality system is solved numerically using the Runge–Kutta-based forward-backward sweep method. Simulation results reveal that implementation of prevention measures is sufficient to eradicate influenza pneumonia coinfection from a given population. The prevention measures could be social distancing, vaccination, curbing mutation and reassortment, and curbing interspecies movement of the influenza virus. |
---|---|
ISSN: | 1748-670X 1748-6718 |