Piezoelectric Response of Multi-Walled Carbon Nanotubes
Recent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-04-01
|
Series: | Materials |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1944/11/4/638 |
id |
doaj-ee5dd516cedf408c8b4784822e7d4f18 |
---|---|
record_format |
Article |
spelling |
doaj-ee5dd516cedf408c8b4784822e7d4f182020-11-24T22:24:08ZengMDPI AGMaterials1996-19442018-04-0111463810.3390/ma11040638ma11040638Piezoelectric Response of Multi-Walled Carbon NanotubesMarina V. Il’ina0Oleg I. Il’in1Yuriy F. Blinov2Alexey A. Konshin3Boris G. Konoplev4Oleg A. Ageev5Electronics and Electronic Equipment Engineering, Institute of Nanotechnologies, Southern Federal University, 347922 Taganrog, RussiaElectronics and Electronic Equipment Engineering, Institute of Nanotechnologies, Southern Federal University, 347922 Taganrog, RussiaElectronics and Electronic Equipment Engineering, Institute of Nanotechnologies, Southern Federal University, 347922 Taganrog, RussiaResearch and Education Center “Nanotechnologies”, Southern Federal University, 347922 Taganrog, RussiaResearch and Education Center “Nanotechnologies”, Southern Federal University, 347922 Taganrog, RussiaResearch and Education Center “Nanotechnologies”, Southern Federal University, 347922 Taganrog, RussiaRecent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the results of our experimental studies confirming the occurrence of a surface piezoelectric effect in multi-walled CNTs under a non-uniform strain. Using atomic force microscopy, we demonstrated the piezoelectric response of multi-walled CNTs under compression and bending. The current generated by deforming an individual CNT was shown to be −24 nA. The value of the surface potential at the top of the bundle of strained CNTs varied from 268 mV to −110 mV, depending on strain type and magnitude. We showed that the maximum values of the current and the surface potential can be achieved when longitudinal strain predominates in a CNT. However, increasing the bending strain of CNTs does not lead to a significant increase in current and surface potential, due to the mutual compensation of piezoelectric charges concentrated on the CNT side walls. The results of the study offer a number of opportunities and challenges for further fundamental research on the piezoelectric properties of carbon nanotubes as well as for the development of advanced CNT-based nanopiezotronic devices.http://www.mdpi.com/1996-1944/11/4/638nanoelectronicsnanopiezotronicscarbon nanotubespiezoelectric effectflexoelectric effectstrainscanning probe microscopy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Marina V. Il’ina Oleg I. Il’in Yuriy F. Blinov Alexey A. Konshin Boris G. Konoplev Oleg A. Ageev |
spellingShingle |
Marina V. Il’ina Oleg I. Il’in Yuriy F. Blinov Alexey A. Konshin Boris G. Konoplev Oleg A. Ageev Piezoelectric Response of Multi-Walled Carbon Nanotubes Materials nanoelectronics nanopiezotronics carbon nanotubes piezoelectric effect flexoelectric effect strain scanning probe microscopy |
author_facet |
Marina V. Il’ina Oleg I. Il’in Yuriy F. Blinov Alexey A. Konshin Boris G. Konoplev Oleg A. Ageev |
author_sort |
Marina V. Il’ina |
title |
Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_short |
Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_full |
Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_fullStr |
Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_full_unstemmed |
Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_sort |
piezoelectric response of multi-walled carbon nanotubes |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2018-04-01 |
description |
Recent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the results of our experimental studies confirming the occurrence of a surface piezoelectric effect in multi-walled CNTs under a non-uniform strain. Using atomic force microscopy, we demonstrated the piezoelectric response of multi-walled CNTs under compression and bending. The current generated by deforming an individual CNT was shown to be −24 nA. The value of the surface potential at the top of the bundle of strained CNTs varied from 268 mV to −110 mV, depending on strain type and magnitude. We showed that the maximum values of the current and the surface potential can be achieved when longitudinal strain predominates in a CNT. However, increasing the bending strain of CNTs does not lead to a significant increase in current and surface potential, due to the mutual compensation of piezoelectric charges concentrated on the CNT side walls. The results of the study offer a number of opportunities and challenges for further fundamental research on the piezoelectric properties of carbon nanotubes as well as for the development of advanced CNT-based nanopiezotronic devices. |
topic |
nanoelectronics nanopiezotronics carbon nanotubes piezoelectric effect flexoelectric effect strain scanning probe microscopy |
url |
http://www.mdpi.com/1996-1944/11/4/638 |
work_keys_str_mv |
AT marinavilina piezoelectricresponseofmultiwalledcarbonnanotubes AT olegiilin piezoelectricresponseofmultiwalledcarbonnanotubes AT yuriyfblinov piezoelectricresponseofmultiwalledcarbonnanotubes AT alexeyakonshin piezoelectricresponseofmultiwalledcarbonnanotubes AT borisgkonoplev piezoelectricresponseofmultiwalledcarbonnanotubes AT olegaageev piezoelectricresponseofmultiwalledcarbonnanotubes |
_version_ |
1725762049767636992 |