An LMI-Based H∞ Control Approach for Networked Control Systems with Deadband Scheduling Scheme

Due to the bandwidth constraints in the networked control systems (NCSs), a deadband scheduling strategy is proposed to reduce the data transmission rate of network nodes. A discrete-time model of NCSs is established with both deadband scheduling and network-induced time-delay. By employing the Lyap...

Full description

Bibliographic Details
Main Authors: Hui-ying Chen, Zu-xin Li, Yan-feng Wang
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2013/430630
Description
Summary:Due to the bandwidth constraints in the networked control systems (NCSs), a deadband scheduling strategy is proposed to reduce the data transmission rate of network nodes. A discrete-time model of NCSs is established with both deadband scheduling and network-induced time-delay. By employing the Lyapunov functional and LMI approach, a state feedback H∞ controller is designed to ensure the closed-loop system asymptotically to be stable with H∞ performance index. Simulation results show that the introduced deadband scheduling strategy can ensure the control performance of the system and effectively reduce the node's data transmission rate.
ISSN:1024-123X
1563-5147