The systematic risk estimation models: A different perspective

In practice, the capital asset pricing model (CAPM) using the parametric estimator is almost certainly being used to estimate a firm's systematic risk (beta) and cost of equity as in Eq. (1). However, the parametric estimators, even when data is normal, may not yield better performance compared...

Full description

Bibliographic Details
Main Authors: Le Tan Phuoc, Chinh Duc Pham
Format: Article
Language:English
Published: Elsevier 2020-02-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844020302164
Description
Summary:In practice, the capital asset pricing model (CAPM) using the parametric estimator is almost certainly being used to estimate a firm's systematic risk (beta) and cost of equity as in Eq. (1). However, the parametric estimators, even when data is normal, may not yield better performance compared with the non-parametric estimators when outliers existed. This research argued for the non-parametric Bayes estimator to be employed in the CAPM by applying both advance and basic evaluation criteria such as hypotheses/confidence intervals of the AIC/DIC, model variance, fit, and error, alpha, and beta and its standard deviation. Using all the S&P 500 stocks having monthly data from 07/2007–05/2019 (450 stocks) and the Bayesian inference, we showed the non-parametric Bayes estimator yielded less number of zeroed betas and smaller alpha compared with the parametric Bayes estimator. More importantly, this non-parametric Bayes yielded the statistically significantly smaller AIC/DIC, model variance, and beta standard deviation and higher model fit compared with the parametric Bayes estimator. These findings indicate the CAPM using the non-parametric Bayes estimator is superior compared with the parametric Bayes estimator, a contrast of common practice. Hence, the non-parametric estimator is recommended to be employed in asset pricing work.
ISSN:2405-8440