Electron-Beam Curing of Acrylate/Nanoparticle Impregnated Wood Products

This study investigated the feasibility of using an electron beam (EB) process to cure chemically impregnated wood products. Maple wood planks were impregnated with the low-viscosity resins 1,6 hexanediol dimethacrylate (HDDA) and trimethylolpropane trimethacrylate (TMPTA). The addition of nanoparti...

Full description

Bibliographic Details
Main Authors: Xiaolin Cai, Pierre Blanchet
Format: Article
Language:English
Published: North Carolina State University 2015-05-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_3_3852_Cai_Blanchet_Electron_Beam_Curing_Nanoparticle
Description
Summary:This study investigated the feasibility of using an electron beam (EB) process to cure chemically impregnated wood products. Maple wood planks were impregnated with the low-viscosity resins 1,6 hexanediol dimethacrylate (HDDA) and trimethylolpropane trimethacrylate (TMPTA). The addition of nanoparticles into the formulation was also studied. The impregnated wood was then cured by EB irradiation. The EB curing method utilizes highly energetic electrons at a controlled energy level to polymerize and cross-link the polymeric materials. The thermal analysis results of differential scanning calorimetry (DSC) confirmed that the curing of chemically impregnated wood by electron beam radiation was validated. Polymerization exotherms were observed for the neat acrylate resin and formulations of acrylate/nanoparticles impregnated maple samples. No polymerization exothermal peaks were observed for both EB-cured impregnated maple and control maple samples, confirming that EB irradiation can serve as an efficient curing method to polymerize acrylate-impregnated wood products. The surface hardness of the EB-cured impregnated maple wood was improved up to 200%.
ISSN:1930-2126
1930-2126