DeepBlockShield: Blockchain Agent-Based Secured Clinical Data Management Model from the Deep Web Environment

With the growth of artificial intelligence in healthcare and biomedical research, many researchers are interested in large amounts of data in hospitals and medical research centers. Then the need for remote medicine services and clinical data utilization are expanding. However, since the misuse and...

Full description

Bibliographic Details
Main Authors: Junho Kim, Mucheol Kim
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/9/1069
Description
Summary:With the growth of artificial intelligence in healthcare and biomedical research, many researchers are interested in large amounts of data in hospitals and medical research centers. Then the need for remote medicine services and clinical data utilization are expanding. However, since the misuse and abuse of clinical data causes serious problems, the scope of its use is bound to have a limited range physically and logically. Then a security-enhanced data distribution system for medical deep web environments. Therefore, in this paper, we propose a blockchain-based clinical data management model named DeepBlockshield to prevent information leakage between the deep web and the surface web. Blockchain supports data integrity and user validation to support data sharing in closed networks. Meanwhile, the agent performs integrity verification between the blockchain and the deep web and strengthens the security between the surface web and the deep web. DeepBlockShield verifies the user’s validity through the records of the deep web and blockchain. Furthermore, we wrap the results analyzed by the valid request into a web interface and provide information to the requester asynchronously. In the experiment, the block generation cycle and size on the delay time was analyzed for verifying the stability of the blockchain network. As a result, it showed that the proposed approach guarantees the integrity and availability of clinical data in the deep web environment.
ISSN:2227-7390