A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system
Summary: We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial d...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-07-01
|
Series: | iScience |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004221006817 |
id |
doaj-ee23db1917214094b15a355b972b98d1 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alison Moss Shaina Robbins Sirisha Achanta Lakshmi Kuttippurathu Scott Turick Sean Nieves Peter Hanna Elizabeth H. Smith Donald B. Hoover Jin Chen Zixi (Jack) Cheng Jeffrey L. Ardell Kalyanam Shivkumar James S. Schwaber Rajanikanth Vadigepalli |
spellingShingle |
Alison Moss Shaina Robbins Sirisha Achanta Lakshmi Kuttippurathu Scott Turick Sean Nieves Peter Hanna Elizabeth H. Smith Donald B. Hoover Jin Chen Zixi (Jack) Cheng Jeffrey L. Ardell Kalyanam Shivkumar James S. Schwaber Rajanikanth Vadigepalli A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system iScience Cardiovascular medicine Molecular physiology Systems neuroscience Transcriptomics |
author_facet |
Alison Moss Shaina Robbins Sirisha Achanta Lakshmi Kuttippurathu Scott Turick Sean Nieves Peter Hanna Elizabeth H. Smith Donald B. Hoover Jin Chen Zixi (Jack) Cheng Jeffrey L. Ardell Kalyanam Shivkumar James S. Schwaber Rajanikanth Vadigepalli |
author_sort |
Alison Moss |
title |
A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system |
title_short |
A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system |
title_full |
A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system |
title_fullStr |
A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system |
title_full_unstemmed |
A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system |
title_sort |
single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system |
publisher |
Elsevier |
series |
iScience |
issn |
2589-0042 |
publishDate |
2021-07-01 |
description |
Summary: We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease. |
topic |
Cardiovascular medicine Molecular physiology Systems neuroscience Transcriptomics |
url |
http://www.sciencedirect.com/science/article/pii/S2589004221006817 |
work_keys_str_mv |
AT alisonmoss asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT shainarobbins asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT sirishaachanta asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT lakshmikuttippurathu asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT scottturick asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT seannieves asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT peterhanna asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT elizabethhsmith asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT donaldbhoover asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT jinchen asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT zixijackcheng asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT jeffreylardell asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT kalyanamshivkumar asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT jamessschwaber asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT rajanikanthvadigepalli asinglecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT alisonmoss singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT shainarobbins singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT sirishaachanta singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT lakshmikuttippurathu singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT scottturick singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT seannieves singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT peterhanna singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT elizabethhsmith singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT donaldbhoover singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT jinchen singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT zixijackcheng singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT jeffreylardell singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT kalyanamshivkumar singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT jamessschwaber singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem AT rajanikanthvadigepalli singlecelltranscriptomicsmapofparacrinenetworksintheintrinsiccardiacnervoussystem |
_version_ |
1721290574576746496 |
spelling |
doaj-ee23db1917214094b15a355b972b98d12021-07-23T04:50:17ZengElsevieriScience2589-00422021-07-01247102713A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous systemAlison Moss0Shaina Robbins1Sirisha Achanta2Lakshmi Kuttippurathu3Scott Turick4Sean Nieves5Peter Hanna6Elizabeth H. Smith7Donald B. Hoover8Jin Chen9Zixi (Jack) Cheng10Jeffrey L. Ardell11Kalyanam Shivkumar12James S. Schwaber13Rajanikanth Vadigepalli14Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USADaniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USADaniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USADaniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USADaniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USADaniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USAUniversity of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USADepartment of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USADepartment of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USABurnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USABurnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USAUniversity of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USAUniversity of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine, UCLA, Los Angeles, CA, USA; Corresponding authorDaniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA; Corresponding authorDaniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA; Corresponding authorSummary: We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease.http://www.sciencedirect.com/science/article/pii/S2589004221006817Cardiovascular medicineMolecular physiologySystems neuroscienceTranscriptomics |