Finite-Time Stabilization for Discrete-Time Delayed Markovian Jump Systems with Partially Delayed Actuator Saturation
The finite-time control problem of discrete-time delayed Markovian jump systems with partially delayed actuator saturation is considered by a mode-dependent parameter approach. Different from the traditionally saturated actuators, a kind of saturated actuator being partially delay-dependent is first...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2016/1304379 |
Summary: | The finite-time control problem of discrete-time delayed Markovian jump systems with partially delayed actuator saturation is considered by a mode-dependent parameter approach. Different from the traditionally saturated actuators, a kind of saturated actuator being partially delay-dependent is firstly proposed, where both nondelay and delay states are included and occur asynchronously. Moreover, the probability distributions of such two terms are described by the Bernoulli variable and are taken into account in the controller design. Sufficient conditions for the existence of the desired controller are presented with LMIs. Finally, a numerical example is provided to show the effectiveness and superiority of the obtained results. |
---|---|
ISSN: | 1026-0226 1607-887X |