Finite-Time Stabilization for Discrete-Time Delayed Markovian Jump Systems with Partially Delayed Actuator Saturation

The finite-time control problem of discrete-time delayed Markovian jump systems with partially delayed actuator saturation is considered by a mode-dependent parameter approach. Different from the traditionally saturated actuators, a kind of saturated actuator being partially delay-dependent is first...

Full description

Bibliographic Details
Main Authors: Guoliang Wang, Bo Feng
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2016/1304379
Description
Summary:The finite-time control problem of discrete-time delayed Markovian jump systems with partially delayed actuator saturation is considered by a mode-dependent parameter approach. Different from the traditionally saturated actuators, a kind of saturated actuator being partially delay-dependent is firstly proposed, where both nondelay and delay states are included and occur asynchronously. Moreover, the probability distributions of such two terms are described by the Bernoulli variable and are taken into account in the controller design. Sufficient conditions for the existence of the desired controller are presented with LMIs. Finally, a numerical example is provided to show the effectiveness and superiority of the obtained results.
ISSN:1026-0226
1607-887X