Graphene Coated Nanoprobes: A Review

Nanoprobes are one of the most important components in several fields of nanoscience to study materials, molecules and particles. In scanning probe microscopes, the nanoprobes consist on silicon tips coated with thin metallic films to provide additional properties, such as conductivity. However, if...

Full description

Bibliographic Details
Main Authors: Fei Hui, Shaochuan Chen, Xianhu Liang, Bin Yuan, Xu Jing, Yuanyuan Shi, Mario Lanza
Format: Article
Language:English
Published: MDPI AG 2017-09-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/7/9/269
Description
Summary:Nanoprobes are one of the most important components in several fields of nanoscience to study materials, molecules and particles. In scanning probe microscopes, the nanoprobes consist on silicon tips coated with thin metallic films to provide additional properties, such as conductivity. However, if the experiments involve high currents or lateral frictions, the initial properties of the tips can wear out very fast. One possible solution is the use of hard coatings, such as diamond, or making the entire tip out of a precious material (platinum or diamond). However, this strategy is more expensive and the diamond coatings can damage the samples. In this context, the use of graphene as a protective coating for nanoprobes has attracted considerable interest. Here we review the main literature in this field, and discuss the fabrication, performance and scalability of nanoprobes.
ISSN:2073-4352