Comparison of Membrane Inlet and Capillary Introduction Miniature Mass Spectrometry for Liquid Analysis

Membrane inlet mass spectrometry (MIMS) is commonly used for detecting the components in liquid samples. When a liquid sample flows through a membrane, certain analytes will permeate into the vacuum chamber of a mass spectrometer from the solution. The properties of the membrane directly determine t...

Full description

Bibliographic Details
Main Authors: Wenyan Shi, Xinqiong Lu, Jinbo Zhang, Jianhong Zhao, Lili Yang, Quan Yu, Xiaohao Wang
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/11/3/567
Description
Summary:Membrane inlet mass spectrometry (MIMS) is commonly used for detecting the components in liquid samples. When a liquid sample flows through a membrane, certain analytes will permeate into the vacuum chamber of a mass spectrometer from the solution. The properties of the membrane directly determine the substances that can be detected by MIMS. A capillary introduction (CI) method we previously proposed can also be used to analyze gas and volatile organic compounds (VOCs) dissolved in liquids. When CI analysis is carried out, the sample is drawn into the mass spectrometer with no species discrimination. The performance of these two injection methods was compared in this study, and similar response time and limit of detection (LOD) can be acquired. Specifically, MIMS can provide better detection sensitivity for most inorganic gases and volatile organic compounds. In contrast, capillary introduction shows wider compatibility on analyte types and quantitative range, and it requires less sample consumption. As the two injection methods have comparable characteristics and can be coupled with a miniature mass spectrometer, factors such as cost, pollution, device size, and sample consumption should be comprehensively considered when choosing a satisfactory injection method in practical applications.
ISSN:2073-4360