Deep Learning Assisted Predict of Lung Cancer on Computed Tomography Images Using the Adaptive Hierarchical Heuristic Mathematical Model
Lung cancer is known to be one of the most dangerous diseases which are the main reason for disease and death when diagnosed in primitive stages. Since lung cancer can only be detected more broadly after it spread to lung parts and the occurrence of lung cancer in the earlier stage is very difficult...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9086786/ |
id |
doaj-edf35b94c6ef491ab0fd6341c8e6d8d8 |
---|---|
record_format |
Article |
spelling |
doaj-edf35b94c6ef491ab0fd6341c8e6d8d82021-03-30T02:49:29ZengIEEEIEEE Access2169-35362020-01-018864008641010.1109/ACCESS.2020.29926459086786Deep Learning Assisted Predict of Lung Cancer on Computed Tomography Images Using the Adaptive Hierarchical Heuristic Mathematical ModelHeng Yu0https://orcid.org/0000-0003-4391-7233Zhiqing Zhou1https://orcid.org/0000-0003-1761-5848Qiming Wang2https://orcid.org/0000-0002-7014-8989School of Information Engineering, Pingdingshan University, Pingdingshan, ChinaSchool of Information Engineering, Pingdingshan University, Pingdingshan, ChinaSchool of Information Engineering, Pingdingshan University, Pingdingshan, ChinaLung cancer is known to be one of the most dangerous diseases which are the main reason for disease and death when diagnosed in primitive stages. Since lung cancer can only be detected more broadly after it spread to lung parts and the occurrence of lung cancer in the earlier stage is very difficult to predict. It causes a greater risk as radiologists and specialist doctors assess the existence of lung cancer. For this reason, it is important to build a smart and automatic cancer prediction system that is accurate and at which stage of cancer or to improve the accuracy of the previous cancer prediction that will help determines the type of treatment and treatment depth depending on the severity of the disease. In this paper, the Adaptive Hierarchical Heuristic Mathematical Model (AHHMM) has been proposed for the deep learning approach. To analyze deep learning based on the historical therapy scheme in the development of Non-Small Cell Lung Cancers (NSCLC) automated radiation adaptation protocols that aim at optimizing local tumor regulation at lower rates of grade 2 RP2 radiation pneumonitis. Furthermore, the system proposed consists of several steps including acquiring the image, preprocessing, binarization, thresholding, and segmentation, extraction of features and detection of deep neural network (DNN). Segmentation of the lung CT image is carried out to extract any significant feature of a segmented image, and a specific feature extraction method is implemented. The test evaluation showed that the model proposed could detect 96.67 % accuracy of the absence or presence of lung cancer.https://ieeexplore.ieee.org/document/9086786/Lung cancer detectiondeep learningdeep neural networkmathematical model |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Heng Yu Zhiqing Zhou Qiming Wang |
spellingShingle |
Heng Yu Zhiqing Zhou Qiming Wang Deep Learning Assisted Predict of Lung Cancer on Computed Tomography Images Using the Adaptive Hierarchical Heuristic Mathematical Model IEEE Access Lung cancer detection deep learning deep neural network mathematical model |
author_facet |
Heng Yu Zhiqing Zhou Qiming Wang |
author_sort |
Heng Yu |
title |
Deep Learning Assisted Predict of Lung Cancer on Computed Tomography Images Using the Adaptive Hierarchical Heuristic Mathematical Model |
title_short |
Deep Learning Assisted Predict of Lung Cancer on Computed Tomography Images Using the Adaptive Hierarchical Heuristic Mathematical Model |
title_full |
Deep Learning Assisted Predict of Lung Cancer on Computed Tomography Images Using the Adaptive Hierarchical Heuristic Mathematical Model |
title_fullStr |
Deep Learning Assisted Predict of Lung Cancer on Computed Tomography Images Using the Adaptive Hierarchical Heuristic Mathematical Model |
title_full_unstemmed |
Deep Learning Assisted Predict of Lung Cancer on Computed Tomography Images Using the Adaptive Hierarchical Heuristic Mathematical Model |
title_sort |
deep learning assisted predict of lung cancer on computed tomography images using the adaptive hierarchical heuristic mathematical model |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2020-01-01 |
description |
Lung cancer is known to be one of the most dangerous diseases which are the main reason for disease and death when diagnosed in primitive stages. Since lung cancer can only be detected more broadly after it spread to lung parts and the occurrence of lung cancer in the earlier stage is very difficult to predict. It causes a greater risk as radiologists and specialist doctors assess the existence of lung cancer. For this reason, it is important to build a smart and automatic cancer prediction system that is accurate and at which stage of cancer or to improve the accuracy of the previous cancer prediction that will help determines the type of treatment and treatment depth depending on the severity of the disease. In this paper, the Adaptive Hierarchical Heuristic Mathematical Model (AHHMM) has been proposed for the deep learning approach. To analyze deep learning based on the historical therapy scheme in the development of Non-Small Cell Lung Cancers (NSCLC) automated radiation adaptation protocols that aim at optimizing local tumor regulation at lower rates of grade 2 RP2 radiation pneumonitis. Furthermore, the system proposed consists of several steps including acquiring the image, preprocessing, binarization, thresholding, and segmentation, extraction of features and detection of deep neural network (DNN). Segmentation of the lung CT image is carried out to extract any significant feature of a segmented image, and a specific feature extraction method is implemented. The test evaluation showed that the model proposed could detect 96.67 % accuracy of the absence or presence of lung cancer. |
topic |
Lung cancer detection deep learning deep neural network mathematical model |
url |
https://ieeexplore.ieee.org/document/9086786/ |
work_keys_str_mv |
AT hengyu deeplearningassistedpredictoflungcanceroncomputedtomographyimagesusingtheadaptivehierarchicalheuristicmathematicalmodel AT zhiqingzhou deeplearningassistedpredictoflungcanceroncomputedtomographyimagesusingtheadaptivehierarchicalheuristicmathematicalmodel AT qimingwang deeplearningassistedpredictoflungcanceroncomputedtomographyimagesusingtheadaptivehierarchicalheuristicmathematicalmodel |
_version_ |
1724184582662651904 |