Robotic Swarm Motion Planning for Load Carrying and Manipulating

Certain species of ants can carry out tasks in dense work spaces while maintaining their ability to accurately manipulate heavy loads, and these advantages are of interest to the robotics community. We consider a robotic swarm of $N\ge 6$ agents that assumes the task of moving a load through a clutt...

Full description

Bibliographic Details
Main Authors: Oded Medina, Shlomi Hacohen, Nir Shvalb
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9031318/
Description
Summary:Certain species of ants can carry out tasks in dense work spaces while maintaining their ability to accurately manipulate heavy loads, and these advantages are of interest to the robotics community. We consider a robotic swarm of $N\ge 6$ agents that assumes the task of moving a load through a cluttered space. This forces the swarm to carefully manipulate the orientation of the load, while transporting it to its destination point. We model this scenario as a 6-PPSS (Prismatic-Prismatic-Spherical-Spherical) redundant mobile platform, having six degrees of freedom. As with insects, the multitude of agents enables sharing the burden of the load in the case that one or more agents are blocked by an obstacle. We model this by a semi-algebraic set of constraints on the distances between the agents and the load. We apply an Extended Kalman Filter routine, in order to estimate their relative locations. We show how the estimation-error is reduced when position-information is shared among the agents. These estimations are then used to calculate the full configuration and investigate the effect of position estimation error on the platform heading error. We show how motion planning can then be calculated in the model's full configuration space and demonstrate this with a distributed control scheme. To reduce the search time, we introduce a variant of the crawling probabilistic road map motion planning algorithm under a set of kinematic constraints and work-space obstacles. Finally, we exemplify our algorithms on several simulated scenarios.
ISSN:2169-3536