Summary: | Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherentlydetrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partiallypropagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s).DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and nonhumanprimates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS andTBI in the near future.
|