Existence and Uniqueness of Solutions for the <i>p</i>(<i>x</i>)-Laplacian Equation with Convection Term
In this paper, we consider the existence and uniqueness of solutions for a quasilinear elliptic equation with a variable exponent and a reaction term depending on the gradient. Based on the surjectivity result for pseudomonotone operators, we prove the existence of at least one weak solution of such...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/10/1768 |
Summary: | In this paper, we consider the existence and uniqueness of solutions for a quasilinear elliptic equation with a variable exponent and a reaction term depending on the gradient. Based on the surjectivity result for pseudomonotone operators, we prove the existence of at least one weak solution of such a problem. Furthermore, we obtain the uniqueness of the solution for the above problem under some considerations. Our results generalize and improve the existing results. |
---|---|
ISSN: | 2227-7390 |