An Android Malware Detection Approach Based on SIMGRU

With the rapid development of the Internet era, the number of malware has reached an unprecedented peak, and therefore malware is threatening global network security seriously. In this article, we propose an Android malware detection approach based on SIMGRU, which belongs to the static detection ap...

Full description

Bibliographic Details
Main Authors: Hanxun Zhou, Xinlin Yang, Hong Pan, Wei Guo
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
GRU
Online Access:https://ieeexplore.ieee.org/document/9152129/
id doaj-edbd7c581a51431183cf52340ad98fdb
record_format Article
spelling doaj-edbd7c581a51431183cf52340ad98fdb2021-03-30T01:57:02ZengIEEEIEEE Access2169-35362020-01-01814840414841010.1109/ACCESS.2020.30075719152129An Android Malware Detection Approach Based on SIMGRUHanxun Zhou0https://orcid.org/0000-0002-6271-1874Xinlin Yang1https://orcid.org/0000-0002-4047-4695Hong Pan2https://orcid.org/0000-0001-6268-7280Wei Guo3https://orcid.org/0000-0003-1769-2173School of Information, Liaoning University, Shenyang, ChinaSchool of Information, Liaoning University, Shenyang, ChinaSchool of Economics, Liaoning University, Shenyang, ChinaSchool of Computer, Shenyang Aerospace University, Shenyang, ChinaWith the rapid development of the Internet era, the number of malware has reached an unprecedented peak, and therefore malware is threatening global network security seriously. In this article, we propose an Android malware detection approach based on SIMGRU, which belongs to the static detection approach. The similarity of clustering is widely used in static analysis of android malware, so we introduce the similarity to improve Gated Recurrent Unit (GRU), and obtain three different structures of SimGRU: InputSimGRU, HiddenSimGRU, and InputHiddenSimGRU. The InputHiddenSimGRU is the combination of InputSimGRU and HiddenSimGRU. The experiment shows that InputSimGRU, HiddenSimGRU, and InputHiddenSimGRU outperform the conventional GRU model and other methods.https://ieeexplore.ieee.org/document/9152129/Network securityandroid malware detectionGRUSIMGRUdeep learning
collection DOAJ
language English
format Article
sources DOAJ
author Hanxun Zhou
Xinlin Yang
Hong Pan
Wei Guo
spellingShingle Hanxun Zhou
Xinlin Yang
Hong Pan
Wei Guo
An Android Malware Detection Approach Based on SIMGRU
IEEE Access
Network security
android malware detection
GRU
SIMGRU
deep learning
author_facet Hanxun Zhou
Xinlin Yang
Hong Pan
Wei Guo
author_sort Hanxun Zhou
title An Android Malware Detection Approach Based on SIMGRU
title_short An Android Malware Detection Approach Based on SIMGRU
title_full An Android Malware Detection Approach Based on SIMGRU
title_fullStr An Android Malware Detection Approach Based on SIMGRU
title_full_unstemmed An Android Malware Detection Approach Based on SIMGRU
title_sort android malware detection approach based on simgru
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2020-01-01
description With the rapid development of the Internet era, the number of malware has reached an unprecedented peak, and therefore malware is threatening global network security seriously. In this article, we propose an Android malware detection approach based on SIMGRU, which belongs to the static detection approach. The similarity of clustering is widely used in static analysis of android malware, so we introduce the similarity to improve Gated Recurrent Unit (GRU), and obtain three different structures of SimGRU: InputSimGRU, HiddenSimGRU, and InputHiddenSimGRU. The InputHiddenSimGRU is the combination of InputSimGRU and HiddenSimGRU. The experiment shows that InputSimGRU, HiddenSimGRU, and InputHiddenSimGRU outperform the conventional GRU model and other methods.
topic Network security
android malware detection
GRU
SIMGRU
deep learning
url https://ieeexplore.ieee.org/document/9152129/
work_keys_str_mv AT hanxunzhou anandroidmalwaredetectionapproachbasedonsimgru
AT xinlinyang anandroidmalwaredetectionapproachbasedonsimgru
AT hongpan anandroidmalwaredetectionapproachbasedonsimgru
AT weiguo anandroidmalwaredetectionapproachbasedonsimgru
AT hanxunzhou androidmalwaredetectionapproachbasedonsimgru
AT xinlinyang androidmalwaredetectionapproachbasedonsimgru
AT hongpan androidmalwaredetectionapproachbasedonsimgru
AT weiguo androidmalwaredetectionapproachbasedonsimgru
_version_ 1724186171058159616