A priori estimates of global solutions of superlinear parabolic systems
We consider the parabolic system $ u_{t}-\Delta u = u^{r}v^{p}$, $v_{t}-\Delta v = u^{q}v^{s}$ in $\Omega\times(0,\infty)$, complemented by the homogeneous Dirichlet boundary conditions and the initial conditions $(u,v)(\cdot,0) = (u_{0},v_{0})$ in $\Omega$, where $\Omega $ is a smooth bounded domai...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2016-04-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4759 |
id |
doaj-edb8fa40e1e148d4ac12ad35c6dcf933 |
---|---|
record_format |
Article |
spelling |
doaj-edb8fa40e1e148d4ac12ad35c6dcf9332021-07-14T07:21:28ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752016-04-0120161912110.14232/ejqtde.2016.1.194759A priori estimates of global solutions of superlinear parabolic systemsJulius Pacuta0Comenius University in Bratislava, SlovakiaWe consider the parabolic system $ u_{t}-\Delta u = u^{r}v^{p}$, $v_{t}-\Delta v = u^{q}v^{s}$ in $\Omega\times(0,\infty)$, complemented by the homogeneous Dirichlet boundary conditions and the initial conditions $(u,v)(\cdot,0) = (u_{0},v_{0})$ in $\Omega$, where $\Omega $ is a smooth bounded domain in $ \mathbb{R}^{N} $ and $ u_{0},v_{0}\in L^{\infty}(\Omega)$ are nonnegative functions. We find conditions on $ p,q,r,s $ guaranteeing a priori estimates of nonnegative classical global solutions. More precisely every such solution is bounded by a constant depending on suitable norm of the initial data. Our proofs are based on bootstrap in weighted Lebesgue spaces, universal estimates of auxiliary functions and estimates of the Dirichlet heat kernel.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4759parabolic systema priori estimatesbootstrap |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Julius Pacuta |
spellingShingle |
Julius Pacuta A priori estimates of global solutions of superlinear parabolic systems Electronic Journal of Qualitative Theory of Differential Equations parabolic system a priori estimates bootstrap |
author_facet |
Julius Pacuta |
author_sort |
Julius Pacuta |
title |
A priori estimates of global solutions of superlinear parabolic systems |
title_short |
A priori estimates of global solutions of superlinear parabolic systems |
title_full |
A priori estimates of global solutions of superlinear parabolic systems |
title_fullStr |
A priori estimates of global solutions of superlinear parabolic systems |
title_full_unstemmed |
A priori estimates of global solutions of superlinear parabolic systems |
title_sort |
priori estimates of global solutions of superlinear parabolic systems |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2016-04-01 |
description |
We consider the parabolic system $ u_{t}-\Delta u = u^{r}v^{p}$, $v_{t}-\Delta v = u^{q}v^{s}$ in $\Omega\times(0,\infty)$, complemented by the homogeneous Dirichlet boundary conditions and the initial conditions $(u,v)(\cdot,0) = (u_{0},v_{0})$ in $\Omega$, where $\Omega $ is a smooth bounded domain in $ \mathbb{R}^{N} $ and $ u_{0},v_{0}\in L^{\infty}(\Omega)$ are nonnegative functions. We find conditions on $ p,q,r,s $ guaranteeing a priori estimates of nonnegative classical global solutions. More precisely every such solution is bounded by a constant depending on suitable norm of the initial data. Our proofs are based on bootstrap in weighted Lebesgue spaces, universal estimates of auxiliary functions and estimates of the Dirichlet heat kernel. |
topic |
parabolic system a priori estimates bootstrap |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4759 |
work_keys_str_mv |
AT juliuspacuta aprioriestimatesofglobalsolutionsofsuperlinearparabolicsystems AT juliuspacuta prioriestimatesofglobalsolutionsofsuperlinearparabolicsystems |
_version_ |
1721303651671080960 |