A priori estimates of global solutions of superlinear parabolic systems

We consider the parabolic system $ u_{t}-\Delta u = u^{r}v^{p}$, $v_{t}-\Delta v = u^{q}v^{s}$ in $\Omega\times(0,\infty)$, complemented by the homogeneous Dirichlet boundary conditions and the initial conditions $(u,v)(\cdot,0) = (u_{0},v_{0})$ in $\Omega$, where $\Omega $ is a smooth bounded domai...

Full description

Bibliographic Details
Main Author: Julius Pacuta
Format: Article
Language:English
Published: University of Szeged 2016-04-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4759
id doaj-edb8fa40e1e148d4ac12ad35c6dcf933
record_format Article
spelling doaj-edb8fa40e1e148d4ac12ad35c6dcf9332021-07-14T07:21:28ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752016-04-0120161912110.14232/ejqtde.2016.1.194759A priori estimates of global solutions of superlinear parabolic systemsJulius Pacuta0Comenius University in Bratislava, SlovakiaWe consider the parabolic system $ u_{t}-\Delta u = u^{r}v^{p}$, $v_{t}-\Delta v = u^{q}v^{s}$ in $\Omega\times(0,\infty)$, complemented by the homogeneous Dirichlet boundary conditions and the initial conditions $(u,v)(\cdot,0) = (u_{0},v_{0})$ in $\Omega$, where $\Omega $ is a smooth bounded domain in $ \mathbb{R}^{N} $ and $ u_{0},v_{0}\in L^{\infty}(\Omega)$ are nonnegative functions. We find conditions on $ p,q,r,s $ guaranteeing a priori estimates of nonnegative classical global solutions. More precisely every such solution is bounded by a constant depending on suitable norm of the initial data. Our proofs are based on bootstrap in weighted Lebesgue spaces, universal estimates of auxiliary functions and estimates of the Dirichlet heat kernel.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4759parabolic systema priori estimatesbootstrap
collection DOAJ
language English
format Article
sources DOAJ
author Julius Pacuta
spellingShingle Julius Pacuta
A priori estimates of global solutions of superlinear parabolic systems
Electronic Journal of Qualitative Theory of Differential Equations
parabolic system
a priori estimates
bootstrap
author_facet Julius Pacuta
author_sort Julius Pacuta
title A priori estimates of global solutions of superlinear parabolic systems
title_short A priori estimates of global solutions of superlinear parabolic systems
title_full A priori estimates of global solutions of superlinear parabolic systems
title_fullStr A priori estimates of global solutions of superlinear parabolic systems
title_full_unstemmed A priori estimates of global solutions of superlinear parabolic systems
title_sort priori estimates of global solutions of superlinear parabolic systems
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2016-04-01
description We consider the parabolic system $ u_{t}-\Delta u = u^{r}v^{p}$, $v_{t}-\Delta v = u^{q}v^{s}$ in $\Omega\times(0,\infty)$, complemented by the homogeneous Dirichlet boundary conditions and the initial conditions $(u,v)(\cdot,0) = (u_{0},v_{0})$ in $\Omega$, where $\Omega $ is a smooth bounded domain in $ \mathbb{R}^{N} $ and $ u_{0},v_{0}\in L^{\infty}(\Omega)$ are nonnegative functions. We find conditions on $ p,q,r,s $ guaranteeing a priori estimates of nonnegative classical global solutions. More precisely every such solution is bounded by a constant depending on suitable norm of the initial data. Our proofs are based on bootstrap in weighted Lebesgue spaces, universal estimates of auxiliary functions and estimates of the Dirichlet heat kernel.
topic parabolic system
a priori estimates
bootstrap
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4759
work_keys_str_mv AT juliuspacuta aprioriestimatesofglobalsolutionsofsuperlinearparabolicsystems
AT juliuspacuta prioriestimatesofglobalsolutionsofsuperlinearparabolicsystems
_version_ 1721303651671080960