On the abscises of the convergence of multiple Dirichlet series
For multiple Dirichlet series of the form$F(s)=sum_{|n|=0}^infty a_{(n)}exp{(lambda_{(n)},s)}$ weestablish relations between domains of the convergence $G_c$,absolutely convergence $G_a$ and of the domain of the existence ofthe maximal term $G_{mu}$ of the series as follows: $gammaG_{c}subset G_{a}+...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2009-12-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Online Access: | http://journals.pu.if.ua/index.php/cmp/article/view/26/22 |
id |
doaj-edb4c3947f9e41baaf1ce448a1447721 |
---|---|
record_format |
Article |
spelling |
doaj-edb4c3947f9e41baaf1ce448a14477212020-11-24T21:51:06ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272009-12-0112152160On the abscises of the convergence of multiple Dirichlet seriesO. Yu. ZadorozhnaO. B. SkaskivFor multiple Dirichlet series of the form$F(s)=sum_{|n|=0}^infty a_{(n)}exp{(lambda_{(n)},s)}$ weestablish relations between domains of the convergence $G_c$,absolutely convergence $G_a$ and of the domain of the existence ofthe maximal term $G_{mu}$ of the series as follows: $gammaG_{c}subset G_{a}+delta_0 e_{1}, gamma G_{mu}subsetG_{a}+delta_0 e_{1},$ where $e_{1}=(1,...,1)in mathbb{R}^p,;; delta_0in mathbb{R},$ by condition $varliminflimits_{|n|oinfty}frac{(gamma-1)ln,|a_{(n)}|+delta_0|lambda_{(n)}|}{ln|n|}>p;$$gamma G_csubset G_a+delta; ;; gamma G_{mu}subsetG_a+delta,$ where $deltainmathbb{R}^{p},$ by condition$varliminflimits_{|n|oinfty}frac{(gamma-1)ln,|a_{(n)}|+(delta,lambda_{(n)})}{ln,n_1+...+ln,n_p}>1.$http://journals.pu.if.ua/index.php/cmp/article/view/26/22 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
O. Yu. Zadorozhna O. B. Skaskiv |
spellingShingle |
O. Yu. Zadorozhna O. B. Skaskiv On the abscises of the convergence of multiple Dirichlet series Karpatsʹkì Matematičnì Publìkacìï |
author_facet |
O. Yu. Zadorozhna O. B. Skaskiv |
author_sort |
O. Yu. Zadorozhna |
title |
On the abscises of the convergence of multiple Dirichlet series |
title_short |
On the abscises of the convergence of multiple Dirichlet series |
title_full |
On the abscises of the convergence of multiple Dirichlet series |
title_fullStr |
On the abscises of the convergence of multiple Dirichlet series |
title_full_unstemmed |
On the abscises of the convergence of multiple Dirichlet series |
title_sort |
on the abscises of the convergence of multiple dirichlet series |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 |
publishDate |
2009-12-01 |
description |
For multiple Dirichlet series of the form$F(s)=sum_{|n|=0}^infty a_{(n)}exp{(lambda_{(n)},s)}$ weestablish relations between domains of the convergence $G_c$,absolutely convergence $G_a$ and of the domain of the existence ofthe maximal term $G_{mu}$ of the series as follows: $gammaG_{c}subset G_{a}+delta_0 e_{1}, gamma G_{mu}subsetG_{a}+delta_0 e_{1},$ where $e_{1}=(1,...,1)in mathbb{R}^p,;; delta_0in mathbb{R},$ by condition $varliminflimits_{|n|oinfty}frac{(gamma-1)ln,|a_{(n)}|+delta_0|lambda_{(n)}|}{ln|n|}>p;$$gamma G_csubset G_a+delta; ;; gamma G_{mu}subsetG_a+delta,$ where $deltainmathbb{R}^{p},$ by condition$varliminflimits_{|n|oinfty}frac{(gamma-1)ln,|a_{(n)}|+(delta,lambda_{(n)})}{ln,n_1+...+ln,n_p}>1.$ |
url |
http://journals.pu.if.ua/index.php/cmp/article/view/26/22 |
work_keys_str_mv |
AT oyuzadorozhna ontheabscisesoftheconvergenceofmultipledirichletseries AT obskaskiv ontheabscisesoftheconvergenceofmultipledirichletseries |
_version_ |
1725880437221359616 |