On the abscises of the convergence of multiple Dirichlet series

For multiple Dirichlet series of the form$F(s)=sum_{|n|=0}^infty a_{(n)}exp{(lambda_{(n)},s)}$ weestablish relations between domains of the convergence $G_c$,absolutely convergence $G_a$ and of the domain of the existence ofthe maximal term $G_{mu}$ of the series as follows: $gammaG_{c}subset G_{a}+...

Full description

Bibliographic Details
Main Authors: O. Yu. Zadorozhna, O. B. Skaskiv
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2009-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/26/22
id doaj-edb4c3947f9e41baaf1ce448a1447721
record_format Article
spelling doaj-edb4c3947f9e41baaf1ce448a14477212020-11-24T21:51:06ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272009-12-0112152160On the abscises of the convergence of multiple Dirichlet seriesO. Yu. ZadorozhnaO. B. SkaskivFor multiple Dirichlet series of the form$F(s)=sum_{|n|=0}^infty a_{(n)}exp{(lambda_{(n)},s)}$ weestablish relations between domains of the convergence $G_c$,absolutely convergence $G_a$ and of the domain of the existence ofthe maximal term $G_{mu}$ of the series as follows: $gammaG_{c}subset G_{a}+delta_0 e_{1}, gamma G_{mu}subsetG_{a}+delta_0 e_{1},$ where $e_{1}=(1,...,1)in mathbb{R}^p,;; delta_0in mathbb{R},$ by condition $varliminflimits_{|n|oinfty}frac{(gamma-1)ln,|a_{(n)}|+delta_0|lambda_{(n)}|}{ln|n|}>p;$$gamma G_csubset G_a+delta; ;; gamma G_{mu}subsetG_a+delta,$ where $deltainmathbb{R}^{p},$ by condition$varliminflimits_{|n|oinfty}frac{(gamma-1)ln,|a_{(n)}|+(delta,lambda_{(n)})}{ln,n_1+...+ln,n_p}>1.$http://journals.pu.if.ua/index.php/cmp/article/view/26/22
collection DOAJ
language English
format Article
sources DOAJ
author O. Yu. Zadorozhna
O. B. Skaskiv
spellingShingle O. Yu. Zadorozhna
O. B. Skaskiv
On the abscises of the convergence of multiple Dirichlet series
Karpatsʹkì Matematičnì Publìkacìï
author_facet O. Yu. Zadorozhna
O. B. Skaskiv
author_sort O. Yu. Zadorozhna
title On the abscises of the convergence of multiple Dirichlet series
title_short On the abscises of the convergence of multiple Dirichlet series
title_full On the abscises of the convergence of multiple Dirichlet series
title_fullStr On the abscises of the convergence of multiple Dirichlet series
title_full_unstemmed On the abscises of the convergence of multiple Dirichlet series
title_sort on the abscises of the convergence of multiple dirichlet series
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
publishDate 2009-12-01
description For multiple Dirichlet series of the form$F(s)=sum_{|n|=0}^infty a_{(n)}exp{(lambda_{(n)},s)}$ weestablish relations between domains of the convergence $G_c$,absolutely convergence $G_a$ and of the domain of the existence ofthe maximal term $G_{mu}$ of the series as follows: $gammaG_{c}subset G_{a}+delta_0 e_{1}, gamma G_{mu}subsetG_{a}+delta_0 e_{1},$ where $e_{1}=(1,...,1)in mathbb{R}^p,;; delta_0in mathbb{R},$ by condition $varliminflimits_{|n|oinfty}frac{(gamma-1)ln,|a_{(n)}|+delta_0|lambda_{(n)}|}{ln|n|}>p;$$gamma G_csubset G_a+delta; ;; gamma G_{mu}subsetG_a+delta,$ where $deltainmathbb{R}^{p},$ by condition$varliminflimits_{|n|oinfty}frac{(gamma-1)ln,|a_{(n)}|+(delta,lambda_{(n)})}{ln,n_1+...+ln,n_p}>1.$
url http://journals.pu.if.ua/index.php/cmp/article/view/26/22
work_keys_str_mv AT oyuzadorozhna ontheabscisesoftheconvergenceofmultipledirichletseries
AT obskaskiv ontheabscisesoftheconvergenceofmultipledirichletseries
_version_ 1725880437221359616