Impact of intersection type and a vehicular fleet's hybridization level on energy consumption and emissions

A vehicle's energy consumption and emissions are two major constraints in sustainable development. Both of them have proportionally raised in recent decades with the exponential growth of world traffic demands. The reduction of road traffic-generated energy consumption and emissions have thus b...

Full description

Bibliographic Details
Main Authors: Samia Boubaker, Férid Rehimi, Adel Kalboussi
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2016-06-01
Series:Journal of Traffic and Transportation Engineering (English ed. Online)
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095756416301040
Description
Summary:A vehicle's energy consumption and emissions are two major constraints in sustainable development. Both of them have proportionally raised in recent decades with the exponential growth of world traffic demands. The reduction of road traffic-generated energy consumption and emissions have thus become unprecedentedly challenging and worth examining. This paper investigates energy consumption and environmental problems present at roundabout and signalized intersection to analyze the impact of the hybridization level's fleet and intersection type on vehicle consumption and pollution. Instantaneous fuel consumption and emission models coupled with simulation of urban mobility (SUMO) are in this study. The authors started with modeling energy consumption. Then, an emission model emissions from traffic (EMIT) was implemented to quantify vehicle emissions of CO2, CO and NOx. These models help investigate the influence of intersection type on energy consumption and environmental conditions. The authors implemented a signalized intersection and roundabout using SUMO. The input data are collected from the roundabout of Sousse (Tunisia) using video data collection. Since there is a lack of econometric models that emulate hybridized stream behavior near intersections, two energy consumption models for the roundabout and crossroad are developed using traffic flow and hybridization level as the input variables. Compared to crossroads, a roundabout can obtain more environmental improvements and substantial reductions in energy consumption and road traffic emissions.
ISSN:2095-7564