Optical OFDM for SiPM-Based Underwater Optical Wireless Communication Links

Underwater optical wireless systems have dual requirements of high data rates and long ranges in harsh scattering and attenuation conditions. In this paper, we investigate the advantages and limitations of optical orthogonal frequency-division multiplexing (O-OFDM) signaling when a silicon photo-mul...

Full description

Bibliographic Details
Main Authors: Taha Essalih, Mohammad Ali Khalighi, Steve Hranilovic, Hassan Akhouayri
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/21/6057
Description
Summary:Underwater optical wireless systems have dual requirements of high data rates and long ranges in harsh scattering and attenuation conditions. In this paper, we investigate the advantages and limitations of optical orthogonal frequency-division multiplexing (O-OFDM) signaling when a silicon photo-multiplier (SiPM) is used at the receiver in order to ensure high sensitivity. Considering a light-emitting diode (LED) transmitter and taking into account the limited dynamic range imposed by the transmitter and the SiPM receiver, we study the performance of three popular O-OFDM schemes, i.e., DC-biased, asymmetrically-clipped, and layered asymmetrically-clipped O-OFDM (DCO-, ACO-, and LACO-OFDM, respectively). We consider a constraint on transmit electrical power <inline-formula><math display="inline"><semantics><msub><mi>P</mi><mi>Txe</mi></msub></semantics></math></inline-formula> and take into account the required DC bias for the three considered schemes in practice, showing the undeniable advantage of ACO- and LACO-OFDM in terms of energy efficiency. For instance, for the considered SiPM and LED components, a spectral efficiency of ∼1 bps/Hz with a data rate of 20 Mbps, a link range of 70 m, and a target bit-error-rate (BER) of <inline-formula><math display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>, ACO and LACO allow a reduction of about 10 and 6 mW, respectively, in the required <inline-formula><math display="inline"><semantics><msub><mi>P</mi><mi>Txe</mi></msub></semantics></math></inline-formula>, compared to DCO-OFDM. Meanwhile, we show that when relaxing the <inline-formula><math display="inline"><semantics><msub><mi>P</mi><mi>Txe</mi></msub></semantics></math></inline-formula> constraint, DCO-OFDM offers the largest operational link range within which a target BER can be achieved. For instance, for a target BER of <inline-formula><math display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> and a data rate of 20 Mbps, and considering <inline-formula><math display="inline"><semantics><msub><mi>P</mi><mi>Txe</mi></msub></semantics></math></inline-formula> of 185, 80, and 50 mW for DCO-, LACO-, and ACO-OFDM, respectively, the corresponding intervals of operational link range are about 81, <inline-formula><math display="inline"><semantics><mrow><mn>74</mn><mo>.</mo><mn>3</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mn>73</mn><mo>.</mo><mn>8</mn></mrow></semantics></math></inline-formula> m. Lastly, we show that LACO-OFDM makes a good compromise between energy efficiency and operational range flexibility, although requiring a higher computational complexity and imposing a longer latency at the receiver.
ISSN:1424-8220