Essential Norm of Composition Operators on Banach Spaces of Hölder Functions
Let (X,d) be a pointed compact metric space, let 0<α<1, and let φ:X→X be a base point preserving Lipschitz map. We prove that the essential norm of the composition operator Cφ induced by the symbol φ on the spaces lip0(X,dα) and Lip0(X,dα) is given by the formula ‖Cφ‖e=limt→0 sup0<d(x, y)&...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2011-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2011/590853 |
id |
doaj-ed2043ed99d842f7bd86ea78d59d289b |
---|---|
record_format |
Article |
spelling |
doaj-ed2043ed99d842f7bd86ea78d59d289b2020-11-24T20:46:27ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/590853590853Essential Norm of Composition Operators on Banach Spaces of Hölder FunctionsA. Jiménez-Vargas0Miguel Lacruz1Moisés Villegas-Vallecillos2Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, SpainDepartamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Avenida Reina, Mercedes s/n, 41012 Sevilla, SpainDepartamento de Álgebra y Análisis Matemático, Universidad de Almería, 04120 Almería, SpainLet (X,d) be a pointed compact metric space, let 0<α<1, and let φ:X→X be a base point preserving Lipschitz map. We prove that the essential norm of the composition operator Cφ induced by the symbol φ on the spaces lip0(X,dα) and Lip0(X,dα) is given by the formula ‖Cφ‖e=limt→0 sup0<d(x, y)<t(d(φ(x),φ(y))α/d(x,y)α) whenever the dual space lip0(X,dα)∗ has the approximation property. This happens in particular when X is an infinite compact subset of a finite-dimensional normed linear space.http://dx.doi.org/10.1155/2011/590853 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Jiménez-Vargas Miguel Lacruz Moisés Villegas-Vallecillos |
spellingShingle |
A. Jiménez-Vargas Miguel Lacruz Moisés Villegas-Vallecillos Essential Norm of Composition Operators on Banach Spaces of Hölder Functions Abstract and Applied Analysis |
author_facet |
A. Jiménez-Vargas Miguel Lacruz Moisés Villegas-Vallecillos |
author_sort |
A. Jiménez-Vargas |
title |
Essential Norm of Composition Operators on Banach Spaces of Hölder Functions |
title_short |
Essential Norm of Composition Operators on Banach Spaces of Hölder Functions |
title_full |
Essential Norm of Composition Operators on Banach Spaces of Hölder Functions |
title_fullStr |
Essential Norm of Composition Operators on Banach Spaces of Hölder Functions |
title_full_unstemmed |
Essential Norm of Composition Operators on Banach Spaces of Hölder Functions |
title_sort |
essential norm of composition operators on banach spaces of hölder functions |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2011-01-01 |
description |
Let (X,d) be a pointed compact metric space, let 0<α<1, and let φ:X→X be a base point preserving Lipschitz map. We prove that the essential norm of the composition operator Cφ induced by the symbol φ on the spaces lip0(X,dα) and Lip0(X,dα) is given by the formula ‖Cφ‖e=limt→0 sup0<d(x, y)<t(d(φ(x),φ(y))α/d(x,y)α) whenever the dual space lip0(X,dα)∗ has the approximation property. This happens in particular when X is an infinite compact subset of a finite-dimensional normed linear space. |
url |
http://dx.doi.org/10.1155/2011/590853 |
work_keys_str_mv |
AT ajimenezvargas essentialnormofcompositionoperatorsonbanachspacesofholderfunctions AT miguellacruz essentialnormofcompositionoperatorsonbanachspacesofholderfunctions AT moisesvillegasvallecillos essentialnormofcompositionoperatorsonbanachspacesofholderfunctions |
_version_ |
1716812544686948352 |