Summary: | In response to the climate change, it is essential to provide smallholder farmers with improved field crop genotypes that may increase the resilience of their farming system. This requires a fast turnover of varieties in a system capable of injecting significant amounts of genetic diversity into productive landscapes. Crop improvement is a pivotal strategy to cope with and adapt to climate change. Modern breeding may rely on the genomics revolution to speed up the development of new varieties with adaptive potential. However, centralized breeding may not adequately address smallholder farmers’ needs for more locally acclimatized varieties or groups of varieties. This, in turn, constrains adoption of new varieties that reduces the effectiveness of a resource-intensive breeding process, an issue that may be overcome with participatory, decentralized approaches. Whether high-tech centralized breeding or decentralized participatory approaches are better suited for smallholder farmers in the global South is hotly debated. Sidestepping any false dichotomies and ideological issues in these debates, this review provides a perspective on relevant advances in a breeding approach that combines the two approaches and uses genomics for trait mining from ex situ collections of genetic materials, participatory multilocation trials and crowdsourced citizen science. It argues that this new combination of high-tech centralized and participatory decentralized methods can provide a coherent and effective approach to breeding for climate adaptation and the present review advocates on a different way forward for the future research.
|