Multilevel Wavelet Feature Statistics for Efficient Retrieval, Transmission, and Display of Medical Images by Hybrid Encoding
<p/> <p>Many common modalities of medical images acquire high-resolution and multispectral images, which are subsequently processed, visualized, and transmitted by subsampling. These subsampled images compromise resolution for processing ability, thus risking loss of significant diagnost...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2003-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S1110865703211203 |
Summary: | <p/> <p>Many common modalities of medical images acquire high-resolution and multispectral images, which are subsequently processed, visualized, and transmitted by subsampling. These subsampled images compromise resolution for processing ability, thus risking loss of significant diagnostic information. A hybrid multiresolution vector quantizer (HMVQ) has been developed exploiting the statistical characteristics of the features in a multiresolution wavelet-transformed domain. The global codebook generated by HMVQ, using a combination of multiresolution vector quantization and residual scalar encoding, retains edge information better and avoids significant blurring observed in reconstructed medical images by other well-known encoding schemes at low bit rates. Two specific image modalities, namely, X-ray radiographic and magnetic resonance imaging (MRI), have been considered as examples. The ability of HMVQ in reconstructing high-fidelity images at low bit rates makes it particularly desirable for medical image encoding and fast transmission of 3D medical images generated from multiview stereo pairs for visual communications.</p> |
---|---|
ISSN: | 1687-6172 1687-6180 |