Application of System Dynamic Modelling for Evaluation of Carbon Mitigation Strategies in Cement Industries: A Comparative Overview of the Current State of the Art

Cement is the key ingredient in concrete, which is the most consumed resource on the planet after water. As an energy-intensive industry, cement production is one of the largest sources of greenhouse emissions in the world today. The demand for cement is synonymous with the growth in infrastructure...

Full description

Bibliographic Details
Main Authors: Akhil Kunche, Bożena Mielczarek
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/5/1464
Description
Summary:Cement is the key ingredient in concrete, which is the most consumed resource on the planet after water. As an energy-intensive industry, cement production is one of the largest sources of greenhouse emissions in the world today. The demand for cement is synonymous with the growth in infrastructure demand and per-capita gross domestic product in the world, calling the need for mitigation measures within the industry in order to contribute to the global climate change efforts. System dynamics (SD) is a simulation approach that is used for studying the nonlinear behaviours in complex systems over time, often used in industrial domains for emission forecasts as well as policy experimentation. With the adoption rates of mitigation strategies in the cement industry being inadequate, there is a need for improvisation in policymaking through better decision-support tools. In this paper, a comparative overview of the studies that specifically utilise the SD approach for evaluation of carbon mitigation strategies in the cement industry is presented on the basis of their scope, model description, scenarios tested, and featured mitigation methods. Additionally, the potential for improvements in future studies is discussed.
ISSN:1996-1073