Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms
Clear-cutting is today the primary driver of large-scale forest disturbance in boreal regions of Fennoscandia. Among the major environmental concerns of this practice for surface waters is the increased mobilization of nutrients, such as dissolved inorganic nitrogen (DIN) into streams. But while DIN...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-01-01
|
Series: | Biogeosciences |
Online Access: | http://www.biogeosciences.net/13/1/2016/bg-13-1-2016.pdf |
Summary: | Clear-cutting is today the primary driver of large-scale forest disturbance
in boreal regions of Fennoscandia. Among the major environmental concerns of
this practice for surface waters is the increased mobilization of nutrients,
such as dissolved inorganic nitrogen (DIN) into streams. But while DIN loading to
first-order streams following forest harvest has been previously described,
the downstream fate and impact of these inputs is not well understood. We
evaluated the downstream fate of DIN and dissolved organic nitrogen (DON)
inputs in a boreal landscape that has been altered by forest harvests over a
10-year period. The small first-order streams indicated substantial leaching
of DIN, primarily as nitrate (NO<sub>3</sub><sup>−</sup>) in response to harvests with
NO<sub>3</sub><sup>−</sup> concentrations increasing by ∼ 15-fold. NO<sub>3</sub><sup>−</sup>
concentrations at two sampling stations further downstream in the network
were strongly seasonal and increased significantly in response to harvesting
at the mid-sized stream, but not at the larger stream. DIN removal efficiency,
<i>E</i><sub>r</sub>, calculated as the percentage of "forestry derived" DIN that was retained within the stream network based on a mass-balance model was
highest during the snowmelt season followed by the growing season, but
declined continuously throughout the dormant season. In contrast, export of
DON from the landscape indicated little removal and was essentially
conservative. Overall, net removal of DIN between 2008 and 2011 accounted for
∼ 65 % of the total DIN mass exported from harvested patches
distributed across the landscape. These results highlight the capacity of
nitrogen-limited boreal stream networks to buffer DIN mobilization that arises from multiple clear-cuts within this landscape. Further, these findings shed light
on the potential impact of anticipated measures to increase forest yields of
boreal forests, such as increased fertilization and shorter forest rotations,
which may increase the pressure on boreal surface waters in the future. |
---|---|
ISSN: | 1726-4170 1726-4189 |