Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering

Abstract The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order parameters, and other symmetry brea...

Full description

Bibliographic Details
Main Authors: Mark P. Oxley, Maxim Ziatdinov, Ondrej Dyck, Andrew R. Lupini, Rama Vasudevan, Sergei V. Kalinin
Format: Article
Language:English
Published: Nature Publishing Group 2021-05-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-021-00527-3
id doaj-ecf1dba1c93343adbad24d4051791a72
record_format Article
spelling doaj-ecf1dba1c93343adbad24d4051791a722021-05-11T14:52:15ZengNature Publishing Groupnpj Computational Materials2057-39602021-05-01711610.1038/s41524-021-00527-3Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scatteringMark P. Oxley0Maxim Ziatdinov1Ondrej Dyck2Andrew R. Lupini3Rama Vasudevan4Sergei V. Kalinin5Center for Nanophase Materials Sciences, Oak Ridge National LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryCenter for Nanophase Materials Sciences, Oak Ridge National LaboratoryAbstract The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order parameters, and other symmetry breaking distortions. A critical bottleneck is the dearth of analytical tools that can reduce complex 4D-STEM data to physically relevant descriptors. We propose an approach for the systematic exploration of 4D-STEM data using rotationally invariant variational autoencoders (rrVAE), which disentangle the general rotation of the object from other latent representations. The implementation of purely rotational rrVAE is discussed as are applications to simulated data for graphene and zincblende structures. The rrVAE analysis of experimental 4D-STEM data of defects in graphene is illustrated and compared to the classical center-of-mass analysis. This approach is universal for probing symmetry-breaking phenomena in complex systems and can be implemented for a broad range of diffraction methods.https://doi.org/10.1038/s41524-021-00527-3
collection DOAJ
language English
format Article
sources DOAJ
author Mark P. Oxley
Maxim Ziatdinov
Ondrej Dyck
Andrew R. Lupini
Rama Vasudevan
Sergei V. Kalinin
spellingShingle Mark P. Oxley
Maxim Ziatdinov
Ondrej Dyck
Andrew R. Lupini
Rama Vasudevan
Sergei V. Kalinin
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
npj Computational Materials
author_facet Mark P. Oxley
Maxim Ziatdinov
Ondrej Dyck
Andrew R. Lupini
Rama Vasudevan
Sergei V. Kalinin
author_sort Mark P. Oxley
title Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_short Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_full Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_fullStr Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_full_unstemmed Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_sort probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
publisher Nature Publishing Group
series npj Computational Materials
issn 2057-3960
publishDate 2021-05-01
description Abstract The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order parameters, and other symmetry breaking distortions. A critical bottleneck is the dearth of analytical tools that can reduce complex 4D-STEM data to physically relevant descriptors. We propose an approach for the systematic exploration of 4D-STEM data using rotationally invariant variational autoencoders (rrVAE), which disentangle the general rotation of the object from other latent representations. The implementation of purely rotational rrVAE is discussed as are applications to simulated data for graphene and zincblende structures. The rrVAE analysis of experimental 4D-STEM data of defects in graphene is illustrated and compared to the classical center-of-mass analysis. This approach is universal for probing symmetry-breaking phenomena in complex systems and can be implemented for a broad range of diffraction methods.
url https://doi.org/10.1038/s41524-021-00527-3
work_keys_str_mv AT markpoxley probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT maximziatdinov probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT ondrejdyck probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT andrewrlupini probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT ramavasudevan probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT sergeivkalinin probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
_version_ 1721443944831647744