Optimization of profenofos organophosphorus pesticide degradation by zero-valent bimetallic nanoparticles using response surface methodology

This study synthesized bimetallic Fe/Ni nanoparticles and used them for catalytic degradation of profenofos, an organophosphorus pesticide. This novel bimetallic catalyst (Fe/Ni) was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray analysis spectroscopy (EDAX) and X-ray d...

Full description

Bibliographic Details
Main Authors: Nafiseh Mansouriieh, Mahmoud Reza Sohrabi, Morteza Khosravi
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:Arabian Journal of Chemistry
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535215001112
Description
Summary:This study synthesized bimetallic Fe/Ni nanoparticles and used them for catalytic degradation of profenofos, an organophosphorus pesticide. This novel bimetallic catalyst (Fe/Ni) was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray analysis spectroscopy (EDAX) and X-ray diffraction (XRD). The bimetallic nano-catalyst was prepared at diameters of 20–50 nm and was shown to effectively degrade profenofos. A three-factor central composite design combined with response surface methodology was used to maximize profenofos removal using the bimetallic system. A quadratic model was built to predict degradation efficiency. ANOVA was used to determine the significance of the variables and interactions between them. Good correlation between the experimental and predicted values was confirmed by the high F-value (16.38), very low P-value (<0.0001), non-significant lack of fit, an appropriate coefficient of determination (R2 = 0.936) and adequate precision (14.75). The highest removal rate attained was 94.51%. Keywords: Bimetallic zero-valent nanoparticles, Organophosphorus pesticide, Optimization, Central composite design, Response surface methodology
ISSN:1878-5352