New number-theoretic cryptographic primitives
This paper introduces new prq-based one-way functions and companion signature schemes. The new signature schemes are interesting because they do not belong to the two common design blueprints, which are the inversion of a trapdoor permutation and the Fiat–Shamir transform. In the basic signature sch...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-08-01
|
Series: | Journal of Mathematical Cryptology |
Subjects: | |
Online Access: | https://doi.org/10.1515/jmc-2019-0035 |
Summary: | This paper introduces new prq-based one-way functions and companion signature schemes. The new signature schemes are interesting because they do not belong to the two common design blueprints, which are the inversion of a trapdoor permutation and the Fiat–Shamir transform. In the basic signature scheme, the signer generates multiple RSA-like moduli ni = pi2qi and keeps their factors secret. The signature is a bounded-size prime whose Jacobi symbols with respect to the ni’s match the message digest. The generalized signature schemes replace the Jacobi symbol with higher-power residue symbols. Given of their very unique design, the proposed signature schemes seem to be overlooked “missing species” in the corpus of known signature algorithms. |
---|---|
ISSN: | 1862-2976 1862-2984 |