Fuzzy x- and s Control Charts: A Data-Adaptability and Human-Acceptance Approach

For sequentially monitoring and controlling average and variability of an online manufacturing process, x¯ and s control charts are widely utilized tools, whose constructions require the data to be real (precise) numbers. However, many quality characteristics in practice, such as surface roughness o...

Full description

Bibliographic Details
Main Authors: Ming-Hung Shu, Dinh-Chien Dang, Thanh-Lam Nguyen, Bi-Min Hsu, Ngoc-Son Phan
Format: Article
Language:English
Published: Hindawi-Wiley 2017-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2017/4376809
Description
Summary:For sequentially monitoring and controlling average and variability of an online manufacturing process, x¯ and s control charts are widely utilized tools, whose constructions require the data to be real (precise) numbers. However, many quality characteristics in practice, such as surface roughness of optical lenses, have been long recorded as fuzzy data, in which the traditional x¯ and s charts have manifested some inaccessibility. Therefore, for well accommodating this fuzzy-data domain, this paper integrates fuzzy set theories to establish the fuzzy charts under a general variable-sample-size condition. First, the resolution-identity principle is exerted to erect the sample-statistics’ and control-limits’ fuzzy numbers (SSFNs and CLFNs), where the sample fuzzy data are unified and aggregated through statistical and nonlinear-programming manipulations. Then, the fuzzy-number ranking approach based on left and right integral index is brought to differentiate magnitude of fuzzy numbers and compare SSFNs and CLFNs pairwise. Thirdly, the fuzzy-logic alike reasoning is enacted to categorize process conditions with intermittent classifications between in control and out of control. Finally, a realistic example to control surface roughness on the turning process in producing optical lenses is illustrated to demonstrate their data-adaptability and human-acceptance of those integrated methodologies under fuzzy-data environments.
ISSN:1076-2787
1099-0526