V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode

Abstract A V4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor, and its zinc-ion storage performance was evaluated. The products are hollow spheres consisting of nanoflakes. The V4+-V2O5 cathode exhibits a prominent cycling performance,...

Full description

Bibliographic Details
Main Authors: Fei Liu, Zixian Chen, Guozhao Fang, Ziqing Wang, Yangsheng Cai, Boya Tang, Jiang Zhou, Shuquan Liang
Format: Article
Language:English
Published: SpringerOpen 2019-03-01
Series:Nano-Micro Letters
Subjects:
Online Access:http://link.springer.com/article/10.1007/s40820-019-0256-2
Description
Summary:Abstract A V4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor, and its zinc-ion storage performance was evaluated. The products are hollow spheres consisting of nanoflakes. The V4+-V2O5 cathode exhibits a prominent cycling performance, with a specific capacity of 140 mAh g−1 after 1000 cycles at 10 A g−1, and an excellent rate capability. The good electrochemical performance is attributed to the presence of V4+, which leads to higher electrochemical activity, lower polarization, faster ion diffusion, and higher electrical conductivity than V2O5 without V4+. This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry.
ISSN:2311-6706
2150-5551