Wnt16 Signaling Is Required for IL-1β-Induced Matrix Metalloproteinase-13-Regulated Proliferation of Human Stem Cell-Derived Osteoblastic Cells

We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7+hSMSC)-derived osteoblast-like (α7+hSMSC-OB) cells, and found that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-13-regulated proliferation of these cells. These data suggest...

Full description

Bibliographic Details
Main Authors: Nobuaki Ozeki, Makio Mogi, Naoko Hase, Taiki Hiyama, Hideyuki Yamaguchi, Rie Kawai, Ayami Kondo, Kazuhiko Nakata
Format: Article
Language:English
Published: MDPI AG 2016-02-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/17/2/221
Description
Summary:We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7+hSMSC)-derived osteoblast-like (α7+hSMSC-OB) cells, and found that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-13-regulated proliferation of these cells. These data suggest that MMP-13 plays a potentially unique physiological role in the regeneration of osteoblast-like cells. Here, we examined whether up-regulation of MMP-13 activity by IL-1β was mediated by Wingless/int1 (Wnt) signaling and increased the proliferation of osteoblast-like cells. IL-1β increased the mRNA and protein levels of Wnt16 and the Wnt receptor Lrp5/Fzd2. Exogenous Wnt16 was found to increase MMP-13 mRNA, protein and activity, and interestingly, the proliferation rate of these cells. Treatment with small interfering RNAs against Wnt16 and Lrp5 suppressed the IL-1β-induced increase in cell proliferation. We revealed that a unique signaling cascade IL-1β→Wnt16→Lrp5→MMP-13, was intimately involved in the proliferation of osteoblast-like cells, and suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation are regulated by Wnt16.
ISSN:1422-0067