Functionalized Carbon Nanotubes for Chemical Sensing: Electrochemical Detection of Hydrogen Isotopes

In this study, we propose a palladium-functionalized CNT composite working as a sensitive material to evaluate the deuterium concentration in aqueous samples. The sensitive material was prepared by the deposition of Pd nanoparticles onto MWCNT–OH by the micellization process. A modified electrode wa...

Full description

Bibliographic Details
Main Authors: Stefan-Marian Iordache, Eusebiu Ilarian Ionete, Ana-Maria Iordache, Ioan Stamatin, Nicolae Catalin Zoita, Arcadie Sobetkii, Cristiana Eugenia Ana Grigorescu
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/11/8/968
Description
Summary:In this study, we propose a palladium-functionalized CNT composite working as a sensitive material to evaluate the deuterium concentration in aqueous samples. The sensitive material was prepared by the deposition of Pd nanoparticles onto MWCNT–OH by the micellization process. A modified electrode was prepared by drop casting 60 μL of Pd-decorated MWCNT suspension on a clean glassy carbon electrode surface. The sensing behavior was investigated in a series of deuterium-enriched solutions ranging from 25 to 10,000 ppm. We performed cyclic voltammetry and impedance spectroscopy studies on the samples. The process is quasi-reversible with the reduction curve more pronounced than the oxidation curve, which indicates a low tendency to desorption for the hydrogen atoms.
ISSN:2079-6412