Modular transformations of elliptic Feynman integrals

We investigate the behaviour of elliptic Feynman integrals under modular transformations. This has a practical motivation: Through a suitable modular transformation we can achieve that the nome squared is a small quantity, leading to fast numerical evaluations. Contrary to the case of multiple polyl...

Full description

Bibliographic Details
Main Author: Stefan Weinzierl
Format: Article
Language:English
Published: Elsevier 2021-03-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321321000067
id doaj-ebbf44edf82f48c6b68d014e165f3a0d
record_format Article
spelling doaj-ebbf44edf82f48c6b68d014e165f3a0d2021-02-23T04:08:43ZengElsevierNuclear Physics B0550-32132021-03-01964115309Modular transformations of elliptic Feynman integralsStefan Weinzierl0PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität Mainz, D - 55099 Mainz, GermanyWe investigate the behaviour of elliptic Feynman integrals under modular transformations. This has a practical motivation: Through a suitable modular transformation we can achieve that the nome squared is a small quantity, leading to fast numerical evaluations. Contrary to the case of multiple polylogarithms, where it is sufficient to consider just variable transformations for the numerical evaluations of multiple polylogarithms, it is more natural in the elliptic case to consider a combination of a variable transformation (i.e. a modular transformation) together with a redefinition of the master integrals. Thus we combine a coordinate transformation on the base manifold with a basis transformation in the fibre. Only in the combination of the two transformations we stay within the same class of functions.http://www.sciencedirect.com/science/article/pii/S0550321321000067
collection DOAJ
language English
format Article
sources DOAJ
author Stefan Weinzierl
spellingShingle Stefan Weinzierl
Modular transformations of elliptic Feynman integrals
Nuclear Physics B
author_facet Stefan Weinzierl
author_sort Stefan Weinzierl
title Modular transformations of elliptic Feynman integrals
title_short Modular transformations of elliptic Feynman integrals
title_full Modular transformations of elliptic Feynman integrals
title_fullStr Modular transformations of elliptic Feynman integrals
title_full_unstemmed Modular transformations of elliptic Feynman integrals
title_sort modular transformations of elliptic feynman integrals
publisher Elsevier
series Nuclear Physics B
issn 0550-3213
publishDate 2021-03-01
description We investigate the behaviour of elliptic Feynman integrals under modular transformations. This has a practical motivation: Through a suitable modular transformation we can achieve that the nome squared is a small quantity, leading to fast numerical evaluations. Contrary to the case of multiple polylogarithms, where it is sufficient to consider just variable transformations for the numerical evaluations of multiple polylogarithms, it is more natural in the elliptic case to consider a combination of a variable transformation (i.e. a modular transformation) together with a redefinition of the master integrals. Thus we combine a coordinate transformation on the base manifold with a basis transformation in the fibre. Only in the combination of the two transformations we stay within the same class of functions.
url http://www.sciencedirect.com/science/article/pii/S0550321321000067
work_keys_str_mv AT stefanweinzierl modulartransformationsofellipticfeynmanintegrals
_version_ 1724255317245558784