Chronic developmental exposure to low-dose ([C8mim][PF6]) induces neurotoxicity and behavioural abnormalities in rats

Ionic liquids (ILs) are widely used for their physical and chemical properties. Toxicological assessments of ILs could help to avoid their threat to human health, but these are rarely reported, and no assessments of IL neurotoxicity in mammals have been performed. Here, we aimed to evaluate the neur...

Full description

Bibliographic Details
Main Authors: Xi Su, Wenqiang Li, Zhen Li, Kang Liu, Meng Song, Minglong Shao, Luxian Lv, Xulu Chang
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0147651321009180
Description
Summary:Ionic liquids (ILs) are widely used for their physical and chemical properties. Toxicological assessments of ILs could help to avoid their threat to human health, but these are rarely reported, and no assessments of IL neurotoxicity in mammals have been performed. Here, we aimed to evaluate the neurotoxicity of chronic 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim][PF6]) (0, 1 mg/kg) exposure during development on rats. Our results indicated that chronic exposure to low-dose ([C8mim][PF6]) induces behavioural abnormalities, including cognitive deficits, social communication disorders, and sensory gating function impairment. Moreover, rats subjected to chronic ([C8mim][PF6]) exposure showed hypofunction of glutamatergic excitatory synapses, including increased expression of NMDA receptor subunits, increased density and immaturity of dendritic spines, and increased expression of PSD95. Additionally, ([C8mim][PF6]) exposure resulted in hippocampal-specific inflammatory activation, indicated by increased levels of proinflammatory factors, elevated nuclear localisation of NF-κB, and activation of microglia and astrocytes. In conclusion, chronic exposure to low-dose ([C8mim][PF6]) induced neurotoxicity, including damage to glutamatergic excitatory synapses and inflammatory activation, which may illuminate the associated behavioural abnormalities. The results presented here may be helpful for the safe use of ILs in the future.
ISSN:0147-6513