Microwave-free nuclear magnetic resonance at molecular scales
Nitrogen vacancy centres can be used for nanoscale nuclear magnetic resonance detection but this typically involves strong microwave control pulses, making practical realizations difficult. Here the authors demonstrate a microwave-free spectroscopic protocol that can detect spins in external samples...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-07-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/ncomms15950 |
id |
doaj-eb69bd2e3e8d4c078fe1abcaa7607d0e |
---|---|
record_format |
Article |
spelling |
doaj-eb69bd2e3e8d4c078fe1abcaa7607d0e2021-05-11T07:34:05ZengNature Publishing GroupNature Communications2041-17232017-07-01811610.1038/ncomms15950Microwave-free nuclear magnetic resonance at molecular scalesJames D. A. Wood0Jean-Philippe Tetienne1David A. Broadway2Liam T. Hall3David A. Simpson4Alastair Stacey5Lloyd C. L. Hollenberg6Centre for Quantum Computation and Communication Technology, School of Physics, The University of MelbourneCentre for Quantum Computation and Communication Technology, School of Physics, The University of MelbourneCentre for Quantum Computation and Communication Technology, School of Physics, The University of MelbourneSchool of Physics, The University of MelbourneSchool of Physics, The University of MelbourneCentre for Quantum Computation and Communication Technology, School of Physics, The University of MelbourneCentre for Quantum Computation and Communication Technology, School of Physics, The University of MelbourneNitrogen vacancy centres can be used for nanoscale nuclear magnetic resonance detection but this typically involves strong microwave control pulses, making practical realizations difficult. Here the authors demonstrate a microwave-free spectroscopic protocol that can detect spins in external samples.https://doi.org/10.1038/ncomms15950 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
James D. A. Wood Jean-Philippe Tetienne David A. Broadway Liam T. Hall David A. Simpson Alastair Stacey Lloyd C. L. Hollenberg |
spellingShingle |
James D. A. Wood Jean-Philippe Tetienne David A. Broadway Liam T. Hall David A. Simpson Alastair Stacey Lloyd C. L. Hollenberg Microwave-free nuclear magnetic resonance at molecular scales Nature Communications |
author_facet |
James D. A. Wood Jean-Philippe Tetienne David A. Broadway Liam T. Hall David A. Simpson Alastair Stacey Lloyd C. L. Hollenberg |
author_sort |
James D. A. Wood |
title |
Microwave-free nuclear magnetic resonance at molecular scales |
title_short |
Microwave-free nuclear magnetic resonance at molecular scales |
title_full |
Microwave-free nuclear magnetic resonance at molecular scales |
title_fullStr |
Microwave-free nuclear magnetic resonance at molecular scales |
title_full_unstemmed |
Microwave-free nuclear magnetic resonance at molecular scales |
title_sort |
microwave-free nuclear magnetic resonance at molecular scales |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2017-07-01 |
description |
Nitrogen vacancy centres can be used for nanoscale nuclear magnetic resonance detection but this typically involves strong microwave control pulses, making practical realizations difficult. Here the authors demonstrate a microwave-free spectroscopic protocol that can detect spins in external samples. |
url |
https://doi.org/10.1038/ncomms15950 |
work_keys_str_mv |
AT jamesdawood microwavefreenuclearmagneticresonanceatmolecularscales AT jeanphilippetetienne microwavefreenuclearmagneticresonanceatmolecularscales AT davidabroadway microwavefreenuclearmagneticresonanceatmolecularscales AT liamthall microwavefreenuclearmagneticresonanceatmolecularscales AT davidasimpson microwavefreenuclearmagneticresonanceatmolecularscales AT alastairstacey microwavefreenuclearmagneticresonanceatmolecularscales AT lloydclhollenberg microwavefreenuclearmagneticresonanceatmolecularscales |
_version_ |
1721452078783528960 |