Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth.
Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular t...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4871462?pdf=render |
id |
doaj-eb4f819f702d47bc9cac00d397f7e115 |
---|---|
record_format |
Article |
spelling |
doaj-eb4f819f702d47bc9cac00d397f7e1152020-11-24T21:54:18ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01115e015568510.1371/journal.pone.0155685Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth.Sungmo JeHailian QuanYina YoonYirang NaBum-Joon KimSeung Hyeok SeokHuman neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular traps (METs) in host defense responses against Mycobacterium massiliense (M. mass) has yet to be described. In this study, we show that M. mass, a rapid growing mycobacterium (RGM), also induces the release of METs from PMA-differentiated THP-1 cells. Intriguingly, this process is not dependent on NADPH oxidase activity, which regulates NET formation. Instead, M. mass-induced MET formation partially depends on calcium influx and requires phagocytosis of high bacterial load. The METs consist of a DNA backbone embedded with microbicidal proteins such as histone, MPO and elastase. Released METs entrap M. mass and prevent their dissemination, but do not have bactericidal activity. Instead, they result in enhanced bacterial growth. In this regard, METs were considered to provide interaction of M. mass with cells and an environment for bacterial aggregation, which may facilitate mycobacterial survival and growth. In conclusion, our results demonstrate METs as an innate defense response against M. mass infection, and suggest that extracellular traps play a multifaceted role in the interplay between host and bacteria.http://europepmc.org/articles/PMC4871462?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sungmo Je Hailian Quan Yina Yoon Yirang Na Bum-Joon Kim Seung Hyeok Seok |
spellingShingle |
Sungmo Je Hailian Quan Yina Yoon Yirang Na Bum-Joon Kim Seung Hyeok Seok Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth. PLoS ONE |
author_facet |
Sungmo Je Hailian Quan Yina Yoon Yirang Na Bum-Joon Kim Seung Hyeok Seok |
author_sort |
Sungmo Je |
title |
Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth. |
title_short |
Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth. |
title_full |
Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth. |
title_fullStr |
Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth. |
title_full_unstemmed |
Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth. |
title_sort |
mycobacterium massiliense induces macrophage extracellular traps with facilitating bacterial growth. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular traps (METs) in host defense responses against Mycobacterium massiliense (M. mass) has yet to be described. In this study, we show that M. mass, a rapid growing mycobacterium (RGM), also induces the release of METs from PMA-differentiated THP-1 cells. Intriguingly, this process is not dependent on NADPH oxidase activity, which regulates NET formation. Instead, M. mass-induced MET formation partially depends on calcium influx and requires phagocytosis of high bacterial load. The METs consist of a DNA backbone embedded with microbicidal proteins such as histone, MPO and elastase. Released METs entrap M. mass and prevent their dissemination, but do not have bactericidal activity. Instead, they result in enhanced bacterial growth. In this regard, METs were considered to provide interaction of M. mass with cells and an environment for bacterial aggregation, which may facilitate mycobacterial survival and growth. In conclusion, our results demonstrate METs as an innate defense response against M. mass infection, and suggest that extracellular traps play a multifaceted role in the interplay between host and bacteria. |
url |
http://europepmc.org/articles/PMC4871462?pdf=render |
work_keys_str_mv |
AT sungmoje mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT hailianquan mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT yinayoon mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT yirangna mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT bumjoonkim mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth AT seunghyeokseok mycobacteriummassilienseinducesmacrophageextracellulartrapswithfacilitatingbacterialgrowth |
_version_ |
1725867703588093952 |