Real-Valued 2D MUSIC Algorithm Based on Modified Forward/Backward Averaging Using an Arbitrary Centrosymmetric Polarization Sensitive Array

Two-dimensional multiple signal classification (MUSIC) algorithm based on polarization sensitive array (PSA) has excellent performance. However, it suffers a high computational complexity due to a multitude of complex operations. In this paper, we propose a real-valued two-dimensional MUSIC algorith...

Full description

Bibliographic Details
Main Authors: Weijian Si, Yan Wang, Changbo Hou, Hong Wang
Format: Article
Language:English
Published: MDPI AG 2017-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/17/10/2241
Description
Summary:Two-dimensional multiple signal classification (MUSIC) algorithm based on polarization sensitive array (PSA) has excellent performance. However, it suffers a high computational complexity due to a multitude of complex operations. In this paper, we propose a real-valued two-dimensional MUSIC algorithm based on conjugate centrosymmetric signal model, which is applicable to arbitrary centrosymmetric polarization sensitive array. The modified forward/backward averaging, which can be applied to the PSA, is presented. Hence, the eigen-decomposition analysis process and spectrum function computation are converted into real domain, prominently reducing the computational complexity. Then, the direction-of-arrival (DOA) estimation is decoupled from the polarization parameter estimation so that the four-dimensional spectral peak search process is avoided. The theoretical computational complexity is discussed and the Cramer-Rao bound (CRB) of DOA estimation is derived in this paper. The simulation results indicate that the proposed algorithm achieves superior accuracy in DOA estimation and has low computational complexity.
ISSN:1424-8220